scholarly journals Development of a technique for the revelation of hidden periodicities in failure time series for predicting the operability of technical objects

Author(s):  
I. I. Buslaeva ◽  
S. P. Yakovleva
Author(s):  
Bohao Li ◽  
Liping Zhao ◽  
Yiyong Yao

Failure time prognosis in manufacturing process plays a crucial role in guaranteeing manufacturing safety and reducing maintenance loss. However, most current prognosis methods face great difficulty when handling massive data collected from manufacturing process. Convolutional neural network (CNN) provides an effective way to extract features with massive data. Due to the difference between images and multisensory signals, CNN is not suitable for machining process. Inspired by the idea of CNN, a novel prognosis framework is proposed based on the characteristics of multisensory signals, which is called multi-dislocated time series convolutional neural network (MDTSCNN). The proposed MDTSCNN is composed of multi-dislocate layer, convolutional layer, pooling layer and fully connected layer. By adding a multi-dislocate layer, this model can learn the relationship between different signals and different intervals in periodic multisensory signals. The effectiveness of proposed method is validated by a milling process. Compared to other prognosis method, the proposed MDTSCNN shows enhanced performances in prediction accuracy.


Author(s):  
Z.. Ismail ◽  
N. H. Ramli ◽  
Z.. Ibrahim ◽  
T. A. Majid ◽  
G. Sundaraj ◽  
...  

In this chapter, a study on the effects of transforming wind speed data, from a time series domain into a frequency domain via Fast Fourier Transform (FFT), is presented. The wind data is first transformed into a stationary pattern from a non-stationary pattern of time series data using statistical software. This set of time series is then transformed using FFT for the main purpose of the chapter. The analysis is done through MATLAB software, which provides a very useful function in FFT algorithm. Parameters of engineering significance such as hidden periodicities, frequency components, absolute magnitude and phase of the transformed data, power spectral density and cross spectral density can be obtained. Results obtained using data from case studies involving thirty-one weather stations in Malaysia show great potential for application in verifying the current criteria used for design practices.


2015 ◽  
Vol 3 (11) ◽  
pp. 6883-6915
Author(s):  
L. K. Read ◽  
R. M. Vogel

Abstract. Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied Generalized Pareto (GP) model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series X, with corresponding failure time series T, should have application to a wide class of natural hazards with rich opportunities for future extensions.


2015 ◽  
Vol 10 (1) ◽  
pp. 729-737
Author(s):  
Khadidja Bensouici ◽  
Zaher Mohdeb

Sign in / Sign up

Export Citation Format

Share Document