Effect of nonlinear elasticity on loading diagrams of rock specimens

2019 ◽  
Author(s):  
Yu. P. Stefanov ◽  
A. S. Romanov ◽  
R. A. Bakeev
Author(s):  
L. Montoto ◽  
M. Montoto ◽  
A. Bel-Lan

INTRODUCTION.- The physical properties of rock masses are greatly influenced by their internal discontinuities, like pores and fissures. So, these need to be measured as a basis for interpretation. To avoid the basic difficulties of measurement under optical microscopy and analogic image systems, the authors use S.E.M. and multiband digital image processing. In S.E.M., analog signal processing has been used to further image enhancement (1), but automatic information extraction can be achieved by simple digital processing of S.E.M. images (2). The use of multiband image would overcome difficulties such as artifacts introduced by the relative positions of sample and detector or the typicals encountered in optical microscopy.DIGITAL IMAGE PROCESSING.- The studied rock specimens were in the form of flat deformation-free surfaces observed under a Phillips SEM model 500. The SEM detector output signal was recorded in picture form in b&w negatives and digitized using a Perkin Elmer 1010 MP flat microdensitometer.


2019 ◽  
Vol 54 (8) ◽  
pp. 1182-1188
Author(s):  
A. A. Markin ◽  
M. Yu. Sokolova
Keyword(s):  

Author(s):  
Guillaume Renaud ◽  
Samuel Callé ◽  
Jean-Pierre Remenieras ◽  
Marielle Defontaine

2021 ◽  
Vol 11 (11) ◽  
pp. 4748
Author(s):  
Monika Balázsová ◽  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Adam Kosík

This study deals with the development of an accurate, efficient and robust method for the numerical solution of the interaction of compressible flow and nonlinear dynamic elasticity. This problem requires the reliable solution of flow in time-dependent domains and the solution of deformations of elastic bodies formed by several materials with complicated geometry depending on time. In this paper, the fluid–structure interaction (FSI) problem is solved numerically by the space-time discontinuous Galerkin method (STDGM). In the case of compressible flow, we use the compressible Navier–Stokes equations formulated by the arbitrary Lagrangian–Eulerian (ALE) method. The elasticity problem uses the non-stationary formulation of the dynamic system using the St. Venant–Kirchhoff and neo-Hookean models. The STDGM for the nonlinear elasticity is tested on the Hron–Turek benchmark. The main novelty of the study is the numerical simulation of the nonlinear vocal fold vibrations excited by the compressible airflow coming from the trachea to the simplified model of the vocal tract. The computations show that the nonlinear elasticity model of the vocal folds is needed in order to obtain substantially higher accuracy of the computed vocal folds deformation than for the linear elasticity model. Moreover, the numerical simulations showed that the differences between the two considered nonlinear material models are very small.


2013 ◽  
Vol 49 (5) ◽  
pp. 677-690 ◽  
Author(s):  
V. N. Oparin ◽  
O. M. Usol’tseva ◽  
V. N. Semenov ◽  
P. A. Tsoi

Sign in / Sign up

Export Citation Format

Share Document