Predicting the interaction between nanoparticles in shear flow using lattice Boltzmann method and Derjaguin–Landau–Verwey–Overbeek (DLVO) theory

2020 ◽  
Vol 32 (4) ◽  
pp. 043302 ◽  
Author(s):  
Mohammad Rahnama ◽  
Ned Djilali
1999 ◽  
Vol 10 (06) ◽  
pp. 1003-1016 ◽  
Author(s):  
GONGWEN PENG ◽  
HAOWEN XI ◽  
SO-HSIANG CHOU

Boundary conditions in a recently-proposed finite volume lattice Boltzmann method are discussed. Numerical simulations for simple shear flow indicate that the extrapolation and the half-covolume techniques for the boundary conditions are workable in conjunction with the finite volume lattice Boltzmann method for arbitrary meshes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fang-Bao Tian

An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.


Sign in / Sign up

Export Citation Format

Share Document