dlvo theory
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 51)

H-INDEX

31
(FIVE YEARS 3)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 237
Author(s):  
Zhenyao Han ◽  
Hiromi Kurokawa ◽  
Hirofumi Matsui ◽  
Chunlin He ◽  
Kaituo Wang ◽  
...  

In this study, 8% hydrogen (H2) in argon (Ar) and carbon dioxide (CO2) gas nanobubbles was produced at 10, 30, and 50 vol.% of ethanol aqueous solution by the high-speed agitation method with gas. They became stable for a long period (for instance, 20 days), having a high negative zeta potential (−40 to −50 mV) at alkaline near pH 9, especially for 10 vol.% of ethanol aqueous solution. The extended Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory was used to evaluate the nanobubble stability. When the nanobubble in ethanol alkaline aqueous solution changed to an acidic pH of around 5, the zeta potential of nanobubbles was almost zero and the decrease in the number of nanobubbles was identified by the particle trajectory method (Nano site). The collapsed nanobubbles at zero charge were detected thanks to the presence of few free radicals using G-CYPMPO spin trap reagent in electron spin resonance (ESR) spectroscopy. The free radicals produced were superoxide anions at collapsed 8%H2 in Ar nanobubbles and hydroxyl radicals at collapsed CO2 nanobubbles. On the other hand, the collapse of mixed CO2 and H2 in Ar nanobubble showed no free radicals. The possible presence of long-term stable nanobubbles and the absence of free radicals for mixed H2 and CO2 nanobubble would be useful to understand the beverage quality.


2021 ◽  
Author(s):  
Emanuele Petretto ◽  
Quy K. Ong ◽  
Francesca Olgiati ◽  
Mao Ting ◽  
Pablo Campomanes ◽  
...  

Monolayer-protected metal nanoparticles (NPs) are not only promising materials with a wide range of potential industrial and biological applications, but they are also a powerful tool to investigate the behavior of matter at nanoscopic scales, including the stability of dispersions and colloidal systems. This stability is dependent on a delicate balance between electrostatic and steric interactions that occur in the solution, and it is described in quantitative terms by the classic Derjaguin-Landau-Vewey-Overbeek (DLVO) theory, that posits that aggregation between NPs is driven by hydrophobic interactions and opposed by electrostatic interactions. To investigate the limits of this theory at the nanoscale, where the continuum assumptions required by the DLVO theory break down, here we investigate NP dimerization by computing the Potential of Mean Force (PMF) of this process using fully atomistic MD simulations. Serendipitously, we find that electrostatic interactions can lead to the formation of metastable NP dimers. These dimers are stabilized by complexes formed by negatively charged ligands belonging to distinct NPs that are bridged by positively charged ions present in solution. We validate our findings by collecting tomographic EM images of NPs in solution and by quantifying their radial distribution function, that shows a marked peak at interparticle distance comparable with that of MD simulations. Taken together, our results suggest that not only hydrophobic interactions, but also electrostatic interactions, contribute to attraction between nano-sized charged objects at very short length scales.


2021 ◽  
Author(s):  
Ruirui Zhao ◽  
Haifeng Wang ◽  
Haoran Du ◽  
Ying Yang ◽  
Zhonghui Gao ◽  
...  

Abstract The porous hexagonal-platelet Zinc (Zn) deposits exacerbate the chemical corrosion and deteriorate the reversibility of the Zn electrodes in aqueous electrolytes. Based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, to turn the messy Zn deposits into agglomerate ones, the challenge is to weaken the electric double layer repulsive force, which is the main reason preventing the dense Zn deposits, between the electrodeposited Zn particles. Here, we proposed a strategy to compress the electric double layer and regulate the forces between the electrodeposited Zn particles by introducing inert charges to the surface of the Zn deposits. The results of the electron microscopies revealed dense and coherent electrodeposition of Zn, indicating that the van der Waals attraction between the deposits becomes governing during electrodeposition. Such results could be attributed to the adsorbed inert charges on Zn deposits decrease the net charges and weaken the electric double layer repulsive force. This design enables the Zn||Zn cells a long-term plating/stripping stability for > 1200 h, a high average Coulombic Efficiency of 99.9% for > 2100 h, and steady charge/discharge responses even under a draconian deep-discharge condition of 80% depth of discharge of Zn (DODZn). In addition, the Zn||VS2 full cells demonstrate significantly improved electrochemical reversibility and capacity retention.


2021 ◽  
Vol 14 (10) ◽  
pp. 977
Author(s):  
T. Brian Cavitt ◽  
Niyati Pathak

Superhydrophilic and superhydrophobic substrates are widely known to inhibit the attachment of a variety of motile and/or nonmotile bacteria. However, the thermodynamics of attachment are complex. Surface energy measurements alone do not address the complexities of colloidal (i.e., bacterial) dispersions but do affirm that polar (acid-base) interactions (ΔGAB) are often more significant than nonpolar (Lifshitz-van der Waals) interactions (ΔGLW). Classical DLVO theory alone also fails to address all colloidal interactions present in bacterial dispersions such as ΔGAB and Born repulsion (ΔGBorn) yet accounts for the significant electrostatic double layer repulsion (ΔGEL). We purpose to model both motile (e.g., P. aeruginosa and E. coli) and nonmotile (e.g., S. aureus and S. epidermidis) bacterial attachment to both superhydrophilic and superhydrophobic substrates via surface energies and extended DLVO theory corrected for bacterial geometries. We used extended DLVO theory and surface energy analyses to characterize the following Gibbs interaction energies for the bacteria with superhydrophobic and superhydrophilic substrates: ΔGLW, ΔGAB, ΔGEL, and ΔGBorn. The combination of the aforementioned interactions yields the total Gibbs interaction energy (ΔGtot) of each bacterium with each substrate. Analysis of the interaction energies with respect to the distance of approach yielded an equilibrium distance (deq) that seems to be independent of both bacterial species and substrate. Utilizing both deq and Gibbs interaction energies, substrates could be designed to inhibit bacterial attachment.


Author(s):  
Zhongfan Zhu

Abstract How the added electrolyte condition and size of primary sediment particles, as well as the particle concentration, affect the rheological behaviours of water-sediment suspension remains to be of interest in sediment field. In this work, rheological experiments of water-kaolinite suspensions with different electrolyte conditions, two particle sizes and 39 solid concentrations were performed. The Bingham fluid model has been adopted to fit the experimental data, and the viscosity and Bingham shear stress values were calculated for each suspension. It has been found that an increase in electrolyte concentration and/or valence leads to a larger viscosity value of the suspension, whereas an increase in electrolyte valence yields a smaller Bingham shear stress value. A simple interpretation based on DLVO theory was presented in this study. It has also been observed that a fine-grained kaolinite suspension corresponds to larger suspension viscosity and Bingham shear stress values. Additionally, some experimental information on the viscosity-solid concentration and Bingham shear stress-solid concentration relationships were also presented in this study. For the viscosity-solid concentration data, the Krieger and Dougherty formula provided the best fit, and a simple exponential relation showed a good fit for the measured shear stress-solid concentration data. HIGHLIGHT This manuscript is valuable in terms of studying ow the added electrolyte condition and size of primary sediment particles, as well as the particle concentration, affect the rheological behaviours of water-sediment suspension.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 231
Author(s):  
Pan Chen ◽  
Youchuan Chen ◽  
Hang Liu ◽  
Haoyu Li ◽  
Xujian Chai ◽  
...  

Ilmenite disseminated grain size is relatively fine, and it must be finely ground to fully separate ilmenite from gangue and then produce fine-grained minerals, which deteriorates flotation. A novel method using buoyant carriers to improve the recovery of fine ilmenite in froth flotation was introduced in this study. Hydrophobized glass bubbles (HGB) as carrier materials were obtained by an efficient, simple modification of ordinary glass bubbles. The carrier flotation of fine ilmenite in the presence of HGB was investigated by micro flotation tests, X-ray diffractometer analysis, Fourier transform infrared (FTIR), optical microscope observation, and the extended DLVO theory (XDLVO). Micro-flotation results showed that the recovery of fine ilmenite in presence of HGB was 37.7% higher than that when using NaOL alone at pH 6. FTIR analysis and optical microscope observation revealed that fine ilmenite particles can be closely attached on the HGB surface to increase apparent particle size considerably. The data calculated from the DLVO theory indicated that the acid–base interaction force determined the adsorption between two hydrophobic particles.


Sign in / Sign up

Export Citation Format

Share Document