Mixed boundary conditions in quantum field theory

1991 ◽  
Vol 32 (7) ◽  
pp. 1755-1766 ◽  
Author(s):  
Hugh Luckock
2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Ryan Thorngren ◽  
Yifan Wang

Abstract A global symmetry of a quantum field theory is said to have an ’t Hooft anomaly if it cannot be promoted to a local symmetry of a gauged theory. In this paper, we show that the anomaly is also an obstruction to defining symmetric boundary conditions. This applies to Lorentz symmetries with gravitational anomalies as well. For theories with perturbative anomalies, we demonstrate the obstruction by analyzing the Wess-Zumino consistency conditions and current Ward identities in the presence of a boundary. We then recast the problem in terms of symmetry defects and find the same conclusions for anomalies of discrete and orientation-reversing global symmetries, up to the conjecture that global gravitational anomalies, which may not be associated with any diffeomorphism symmetry, also forbid the existence of boundary conditions. This conjecture holds for known gravitational anomalies in D ≤ 3 which allows us to conclude the obstruction result for D ≤ 4.


2020 ◽  
Vol 135 (10) ◽  
Author(s):  
Iberê Kuntz

AbstractWe remark that Ostrogradsky ghosts in higher-derivative gravity, with a finite number of derivatives, are fictitious as they result from an unjustified truncation performed in a complete theory containing infinitely many curvature invariants. The apparent ghosts can then be projected out of the quadratic gravity spectrum by redefining the boundary conditions of the theory in terms of an integration contour that does not enclose the ghost poles. This procedure does not alter the renormalizability of the theory. One can thus use quadratic gravity as a quantum field theory of gravity that is both renormalizable and unitary.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Andrew Loveridge

Abstract Spacetime boundaries with canonical Neuman or Dirichlet conditions preserve conformal invarience, but “mixed” boundary conditions which interpolate linearly between them can break conformal symmetry and generate interesting Renormalization Group flows even when a theory is free, providing soluble models with nontrivial scale dependence. We compute the (Rindler) entanglement entropy for a free scalar field with mixed boundary conditions in half Minkowski space and in Anti-de Sitter space. In the latter case we also compute an additional geometric contribution, which according to a recent proposal then collectively give the 1/N corrections to the entanglement entropy of the conformal field theory dual. We obtain some perturbatively exact results in both cases which illustrate monotonic interpolation between ultraviolet and infrared fixed points. This is consistent with recent work on the irreversibility of renormalization group, allowing some assessment of the aforementioned proposal for holographic entanglement entropy and illustrating the generalization of the g-theorem for boundary conformal field theory.


1996 ◽  
Vol 11 (32n33) ◽  
pp. 2601-2609 ◽  
Author(s):  
T.D. KIEU

It is argued that gauge anomalies are only artefacts of the conventional quantization of quantum field theory. When the Berry’s phase is taken into consideration to satisfy certain boundary conditions of the generating path integral, the gauge anomalies associated with homotopically nontrivial gauge transformations are explicitly shown to be eliminated, without any extra quantum fields introduced.


Sign in / Sign up

Export Citation Format

Share Document