Milestones in rotating shallow water modeling of Rossby vortices, plasma drift vortices, and spiral structures in galaxies

1997 ◽  
Author(s):  
M. V. Nezlin ◽  
A. Yu. Rylov ◽  
K. B. Titishov ◽  
G. P. Chernikov
1999 ◽  
Vol 3 (4) ◽  
pp. 251-266
Author(s):  
M. V. Nezlin ◽  
A. Yu Rylov ◽  
E. N. Snezhkin ◽  
K. B. Titishov ◽  
G. P. Chernikov

Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridmanet al. (Astrophysics and Space Science, 1997, 252, 115.)


2000 ◽  
Vol 54 (4) ◽  
pp. 11-25
Author(s):  
M. V. Nezlin ◽  
A. Yu. Rylov ◽  
K. B. Titishov ◽  
G. P. Chernikov

2013 ◽  
Vol 716 ◽  
pp. 528-565 ◽  
Author(s):  
Bruno Ribstein ◽  
Vladimir Zeitlin

AbstractWe undertake a detailed analysis of linear stability of geostrophically balanced double density fronts in the framework of the two-layer rotating shallow-water model on the $f$-plane with topography, the latter being represented by an escarpment beneath the fronts. We use the pseudospectral collocation method to identify and quantify different kinds of instabilities resulting from phase locking and resonances of frontal, Rossby, Poincaré and topographic waves. A swap in the leading long-wave instability from the classical barotropic form, resulting from the resonance of two frontal waves, to a baroclinic form, resulting from the resonance of Rossby and frontal waves, takes place with decreasing depth of the lower layer. Nonlinear development and saturation of these instabilities, and of an instability of topographic origin, resulting from the resonance of frontal and topographic waves, are studied and compared with the help of a new-generation well-balanced finite-volume code for multilayer rotating shallow-water equations. The results of the saturation for different instabilities are shown to produce very different secondary coherent structures. The influence of the topography on these processes is highlighted.


2018 ◽  
Author(s):  
LMD

We show how the two-layer moist-convective rotating shallow water model (mcRSW), which proved to be a simple and robust tool for studying effects of moist convection on large-scale atmospheric motions, can be improved by including, in addition to the water vapour, precipitable water, and the effects of vaporisation, entrainment, and precipitation. Thus improved mcRSW becomes cloud-resolving. It is applied, as an illustration, to model the development of instabilities of tropical cyclone-like vortices.


Sign in / Sign up

Export Citation Format

Share Document