spiral structures
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 28)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 163 (1) ◽  
pp. 31
Author(s):  
Boris S. Safonov ◽  
Ivan A. Strakhov ◽  
Maria V. Goliguzova ◽  
Olga V. Voziakova

Abstract The study of spiral structures in protoplanetary disks is of great importance for understanding the processes in the disks, including planet formation. Bright spiral arms were detected in the disk of young star CQ Tau by Uyama et al. in the H and L bands. The spiral arms are located inside the gap in millimeter-sized dust, discovered earlier using Atacama Large Millimeter/submillimeter Array observations. To explain the gap, Ubeira Gabellini et al. proposed the existence of a planet with the semimajor axis of 20 au. We obtained multi-epoch observations of a spiral feature in the circumstellar envelope of CQ Tau in the I c band using a novel technique of differential speckle polarimetry. The observations covering a period from 2015 to 2021 allow us to estimate the pattern speed of the spiral: −0.°2 ± 1.°1 yr−1 (68% credible interval; positive value indicates counterclockwise rotation), assuming a face-on orientation of the disk. This speed is significantly smaller than expected for a companion-induced spiral, if the perturbing body has a semimajor axis of 20 au. We emphasize that the morphology of the spiral structure is likely to be strongly affected by shadows of a misaligned inner disk detected by Eisner et al.


ACS Omega ◽  
2021 ◽  
Author(s):  
Binfeng Yin ◽  
Wenkai Yue ◽  
A. S. M. Muhtasim Fuad Sohan ◽  
Teng Zhou ◽  
Changcheng Qian ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (19) ◽  
pp. 10734
Author(s):  
Elena N. Velichko ◽  
Elina K. Nepomnyashchaya ◽  
Maksim A. Baranov ◽  
Alexey N. Skvortsov ◽  
Ivan V. Pleshakov ◽  
...  

In this study, interactions of Fe3O4 magnetic nanoparticles with serum albumin biomolecules in aqueous solutions were considered. The studies were conducted with the laser correlation spectroscopy and optical analysis of dehydrated films. It was shown that the addition of magnetite to an albumin solution at low concentrations of up to 10−6 g/L led to the formation of aggregates with sizes of up to 300 nm in the liquid phase and an increase in the number of spiral structures in the dehydrated films, which indicated an increase in their stability. With a further increase in the magnetite concentration in the solution (from 10−4 g/L), the magnetic particles stuck together and to albumin, thus forming aggregates with sizes larger than 1000 nm. At the same time, the formation of morphological structures in molecular films was disturbed, and a characteristic decrease in their stability occurred. Most stable films were formed at low concentrations of magnetic nanoparticles (less than 10−4 g/L) when small albumin–magnetic nanoparticle aggregates were formed. These results are important for characterizing the interaction processes of biomolecules with magnetic nanoparticles and can be useful for predicting the stability of biomolecular films with the inclusion of magnetite particles.


Author(s):  
Peng Li ◽  
Ting Zhang ◽  
Li-Li Li ◽  
Wen-Kui Dong

A family of rare structurally different homometal multinuclear CuII bis(salamo)-based complexes, [Cu4(L)2(MeOH)2](ClO4)2·2MeOH (1), [Cu4(L)2(EtOH)2](NO3)2·2EtOH (2) and [Cu2(HL)(EtOH)Br2]·CHCl3 (3), has been successfully synthesized by the reactions of cupric salts with a bis(salamo)-based multidentate chelate ligand (H3 L). The salamo-based ligand [R-CH=N—O—(CH2) n —O—N=CH—R] is a new type of salen-based analog. Complexes (1) and (2) are isostructural structures, and crystallize in monoclinic space group P21/n with centrosymmetric spiral structures, where the main structures contain two fully deprotonated ligand (L)3− units, a charged tetranuclear CuII folding center and two coordinated solvent molecules. Complex (3) crystallizes in monoclinic space group Cc and consists of two CuII cations, one incompletely deprotonated ligand (HL)2− unit and one coordinated ethanol molecule, and forms a novel homo-binuclear CuII complex structure due to Br− counter anions. Complexes (1)–(3) have zero-dimensional cluster-based structures and are further assembled into three-dimensional frameworks via intermolecular interactions. Because of the different solvents and counter anions which have a significant influence on the structures of complexes (1)–(3), the interactions were quantitatively evaluated by Hirshfeld surfaces analyses. Complexes (1)–(3) have been characterized by elemental analyses, IR spectra, UV–vis spectra and X-ray crystallography analyses. In addition, fluorescence properties are evaluated and DFT calculations are performed.


2021 ◽  
Vol 508 (1) ◽  
pp. 352-370
Author(s):  
Florent Renaud ◽  
Alessandro B Romeo ◽  
Oscar Agertz

ABSTRACT The morphology of gas-rich disc galaxies at redshift $\sim 1\!-\!3$ is dominated by a few massive clumps. The process of formation or assembly of these clumps and their relation to molecular clouds in contemporary spiral galaxies are still unknown. Using simulations of isolated disc galaxies, we study how the structure of the interstellar medium and the stability regime of the discs change when varying the gas fraction. In all galaxies, the stellar component is the main driver of instabilities. However, the molecular gas plays a non-negligible role in the interclump medium of gas-rich cases, and thus in the assembly of the massive clumps. At scales smaller than a few 100 pc, the Toomre-like disc instabilities are replaced by another regime, especially in the gas-rich galaxies. We find that galaxies at low gas fraction (10 per cent) stand apart from discs with more gas, which all share similar properties in virtually all aspects we explore. For gas fractions below $\approx 20{{\ \rm per\ cent}}$, the clump-scale regime of instabilities disappears, leaving only the large-scale disc-driven regime. Associating the change of gas fraction to the cosmic evolution of galaxies, this transition marks the end of the clumpy phase of disc galaxies, and allows for the onset of spiral structures, as commonly found in the local Universe.


2021 ◽  
Author(s):  
Pin Cao ◽  
Qingmei Rao ◽  
Jian Yang ◽  
Fatao Tong
Keyword(s):  

2021 ◽  
Vol 504 (1) ◽  
pp. 782-791
Author(s):  
H Garg ◽  
C Pinte ◽  
V Christiaens ◽  
D J Price ◽  
J S Lazendic ◽  
...  

ABSTRACT We present ALMA observations of the 12CO, 13CO, C18O J = 2-1 transitions and the 1.3 mm continuum emission for the circumbinary disc around HD 142527, at an angular resolution of ≈ 0${_{.}^{\prime\prime}}$3. We observe multiple spiral structures in intensity, velocity, and velocity dispersion for the 12CO and 13CO gas tracers. A newly detected 12CO spiral originates from the dust horseshoe, and is rotating at super-Keplerian velocity or vertically ascending, whilst the interspiral gas is rotating at sub-Keplerian velocities. This new spiral possibly connects to a previously identified spiral, thus spanning >360°. A spatial offset of  30 au is observed between the 12CO and 13CO spirals, to which we hypothesize that the gas layers are propagating at different speeds (surfing) due to a non-zero vertical temperature gradient. Leveraging the varying optical depths between the CO isotopologues, we reconstruct temperature and column density maps of the outer disc. Gas surface density peaks at r ≈ 180 au, coincident with the peak of continuum emission. Here, the dust grains have a Stokes number of ≈ 1, confirming radial and azimuthal trapping in the horseshoe. We measure a cavity radius at half-maximum surface density of ≈ 100 au, and a cavity eccentricity between 0.3 and 0.45.


Sign in / Sign up

Export Citation Format

Share Document