plasma drift
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 16)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Ricardo Yvan de La Cruz Cueva ◽  
Eurico Rodrigues de Paula ◽  
Acácio Cunha Neto

Abstract. The goal of this work is to study the time and altitude echoes characteristics under different solar and seasonality conditions using the VHF radar RTI images. The occurrence of equatorial spread F depends on the existence of conditions that can seed the Raileight-Taylor instability, and these conditions can change with solar flux, seasonality, longitude distributions, and day-to-day variability. So, the equatorial spread F is observed as its time and altitude occurrence. The VHF radar of Christmas Island (2.0° N, 157.4° W, 2.9° N dip latitude) has been operational in the equatorial region for some time now, allowing long-term observations. The occurrence of echoes during solar minimum conditions are observed all throughout the night since the post reversal westward electric field is weaker than the solar maximum and the possibilities for the vertical plasma drift to become positive are larger. On other hand, echoes during solar maximum will be controlled by dynamics near the time of the Pre-reversal Peak (PRE). Our results indicate peak time occurrence of echoes along this period shows a well-defined pattern, with echoes being distributed as closer to local sunset during solar maximum and around/closer midnight during solar minimum conditions, meanwhile, the peak altitude occurrence of echoes shows a slightly regular pattern with higher altitude occurrences during solar maxima and lower altitudes during solar minimum conditions.


2021 ◽  
Vol 13 (17) ◽  
pp. 3440
Author(s):  
Loredana Perrone ◽  
Andrey V. Mikhailov ◽  
Dario Sabbagh

For the first time thermospheric parameters (neutral composition, exospheric temperature and vertical plasma drift related to thermospheric winds) have been inferred for ionospheric G-conditions observed with Millstone Hill ISR on 11–13 September 2005; 13 June 2005, and 15 July 2012. The earlier developed method to extract a consistent set of thermospheric parameters from ionospheric observations has been revised to solve the problem in question. In particular CHAMP/STAR and GOCE neutral gas density observations were included into the retrieval process. It was found that G-condition days were distinguished by enhanced exospheric temperature and decreased by ~2 times of the column atomic oxygen abundance in a comparison to quiet reference days, the molecular nitrogen column abundance being practically unchanged. The inferred upward plasma drift corresponds to strong ~90 m/s equatorward thermospheric wind presumably related to strong auroral heating on G-condition days.


2021 ◽  
Author(s):  
Astrid Maute ◽  
Brian Harding ◽  
Joanne Wu ◽  
Colin Triplett ◽  
Rodrick Heelis ◽  
...  

<p>The neutral wind dynamo plays an important role in generating low-latitude ionospheric variability and space weather. The characteristic equatorial ionization anomaly is generated by the daytime equatorial upward drift, which has imprinted on it the variation from upward propagating tides and waves. Observations and modeling studies have indicated large variability of the plasma drift on time scales from days to seasons associated with the wind dynamo at low and middle latitudes. The relationship of the ionospheric drift variability to the neutral wind variations is still not fully understood. The Ionospheric Connection explorer (ICON) mission is designed to focus on the low to middle latitude region and measures key parameters, such as the plasma drift and density and neutral temperatures and winds, to address the question of vertical coupling.</p><p>In this presentation, we will focus on the ICON observations and compare to Whole Atmosphere Community Climate Model-Extended (WACCM-X) simulations to examine the daytime low latitude ion drift and neutral wind variations. We investigate the day-to-day and longitudinal variation between concurrent ion drift and neutral wind variations over short time periods to quantify the contribution of the neutral wind in generating the ionospheric drift variations. Employing WACCM-X simulations, we investigate the importance of contributing factors, such as ionospheric conductivities, the geomagnetic main field, magnetosphere-ionosphere coupling, and the neutral wind, in generating the observed ionospheric drift variations. While we focus in this study on field line integrated ionospheric current density due to electric field/drift and neutral wind, we conclude by discussing our results in a more general context.</p>


2020 ◽  
Author(s):  
Dalia Buresova ◽  
John Bosco Habarulema ◽  
Jurgen Watermann ◽  
Ilya K. Edemskiy ◽  
Jaroslav Urbar ◽  
...  

<p>The paper presents results of the analysis of the changes in the regular ionospheric variability and TID activity observed during CIR/HSSS-related storms. We analyzed main ionospheric parameters retrieved from manually scaled ionograms, plasma drift measurements and TEC data obtained from several European and African ionospheric stations and GNSS receivers. Most of the observed storm-related TIDs had periods of 60-180 min (LSTIDs). During the analyzed storms we also observed extraordinary spreads and plasma bubbles at the F region heights. The results of the analysis were compared with the TID activity during strong magnetic storms of CME origin along the European-African sector. In order to obtain quantitative information on the likeliness and morphology of interhemispheric circulation of LSTIDs at about 40 events were examined lasting between 8 and 24 hours each. We used exclusively GPS-based detection methods, specifically information on TEC, TEC deviations in space and time from a background reference (dTEC), and the Rate of TEC change in time (ROT), all inferred from GPS receiver networks in Europe and Africa. We conclude that hemispheric conjugacy of LSTID is highly probable while interhemispheric circulation rather unlikely but still occurring during some periods.</p>


2019 ◽  
Vol 37 (5) ◽  
pp. 807-818 ◽  
Author(s):  
Laysa Cristina Araujo Resende ◽  
Clezio Marcos Denardini ◽  
Giorgio Arlan Silva Picanço ◽  
Juliano Moro ◽  
Diego Barros ◽  
...  

Abstract. F region vertical drifts (Vz) are the result of the interaction between ionospheric plasma with the zonal electric field and the Earth's magnetic field. Abrupt variations in Vz are strongly associated with the occurrence of plasma irregularities (spread F) during the nighttime periods. These irregularities are manifestations of space weather in the ionosphere's environment without necessarily requiring a solar burst. In this context, the Brazilian Space Weather Study and Monitoring Program (Embrace) of the National Institute for Space Research (INPE) has been developing different indexes to analyze these ionospheric irregularities in the Brazilian sector. Therefore, the main purpose of this work is to produce a new ionospheric scale based on the analysis of the ionospheric plasma drift velocity, named AV. It is based on the maximum value of Vz (Vzp), which in turn is calculated through its relationship with the virtual height parameter, h′F, measured by the Digisonde Portable Sounder (DPS-4D) installed in São Luís (2∘ S, 44∘ W; dip: −2.3∘). This index quantifies the time relationship between the Vz peak and the irregularity observed in the ionograms. Thus, in this study, we analyzed 7 years of data, between 2009 and 2015, divided by season in order to construct a standardized scale. The results show there is a delay of at least 15 min between the Vzp observation and the irregularity occurrence. Finally, we believe that this proposed index allows for evaluating the impacts of ionospheric phenomena in the space weather environment.


2019 ◽  
Vol 59 (5) ◽  
pp. 539-542
Author(s):  
A. E. Stepanov ◽  
V. L. Khalipov ◽  
S. E. Kobyakova ◽  
G. A. Kotova

Sign in / Sign up

Export Citation Format

Share Document