scholarly journals Improved evaluation of spin-polarization energy contributions using broken-symmetry calculations

2020 ◽  
Vol 153 (5) ◽  
pp. 054120 ◽  
Author(s):  
Grégoire David ◽  
Nicolas Ferré ◽  
Georges Trinquier ◽  
Jean-Paul Malrieu
2005 ◽  
Vol 19 (15n17) ◽  
pp. 2538-2543 ◽  
Author(s):  
YI QUAN ZHANG ◽  
CHENG LIN LUO ◽  
ZHI YU

Magnetic coupling constants J for the complete structures of [ Gd(capro) 2( H 2 O )4 Cr(CN) 6]• H 2 O (capro represents caprolactam) (a) and trans-[ Fe(CN) 4(μ- CN )2 Gd ( H 2 O )4 (bpy) ]•4 H 2 O •1.5 bpy (b) have been calculated using hybrid density functional theory (DFT) B3LYP combined with a modified broken symmetry approach (BS). The calculated J value of -0.24 cm-1 for a is very close to the experimental -0.33 cm-1. They both show the antiferromagnetic interaction between Gd(III) and Cr(III) . For b, although the sign of the calculated J value of 4.24 cm-1 is different from that of the experimental -0.38 cm-1, the two values both show the weak magnetic coupling interaction between Gd(III) and Fe(III) . The spin density distributions are discussed on the basis of Mulliken population analysis. For complexes a and b, both transition metal ( Fe(III) or Cr(III) ) and rare earth Gd(III) display a spin polarization effect on the surrounding atoms, where a counteraction of the opposite polarization effects leads to a low spin density on the bridging ligand C1N1 . For the compounds Gd(III) - Cr(III) (a) and Gd(III) - Fe(III) (b) in the HS states, Cr(III) has stronger spin polarization influence on the bridging atoms than Fe(III) even causing the positive spin population on the bridging atom N1 .


1998 ◽  
Vol 58 (3) ◽  
pp. 1096-1099 ◽  
Author(s):  
Ph. Mavropoulos ◽  
N. Stefanou ◽  
N. Papanikolaou

1983 ◽  
Vol 140 (7) ◽  
pp. 429 ◽  
Author(s):  
Evgenii A. Turov ◽  
Vladimir G. Shavrov
Keyword(s):  

1980 ◽  
Vol 45 (6) ◽  
pp. 1669-1676 ◽  
Author(s):  
Pavel Kubáček

The first step of electrochemical oxidation of 2-phenyl- and 2-(4-tolyl)-1,3,4,7-tetramethylisoindoles in anhydrous acetonitrile produces relatively stable cationradicals which have been studied by means of EPR spectroscopy using the method of internal electrochemical generation of radicals under reduced temperature. The same electrochemical behaviour of the both studied derivatives and identical EPR spectra of their cationradicals can be explained within the Huckel MO method. The largest contribution to the magnitude of splitting constant of nitrogen nucleus is due to π-σ-spin polarization of C-N bonds caused by high spin abundance of pz-AO of carbon atoms. Half-life of decomposition of the studied cationradicals is 4 min at -30°C.


Author(s):  
M. M. Glazov

The transfer of nonequilibrium spin polarization between the electron and nuclear subsystems is studied in detail. Usually, a thermal orientation of nuclei in magnetic field is negligible due to their small magnetic moments, but if electron spins are optically oriented, efficient nuclear spin polarization can occur. The microscopic approach to the dynamical nuclear polarization effect based on the kinetic equation method, along with a phenomenological but very powerful description of dynamical nuclear polarization in terms of the nuclear spin temperature concept is given. In this way, one can account for the interaction between neighbouring nuclei without solving a complex many-body problem. The hyperfine interaction also induces the feedback of polarized nuclei on the electron spin system giving rise to a number of nonlinear effects: bistability of nuclear spin polarization and anomalous Hanle effect, dragging and locking of optical resonances in quantum dots. Theory is illustrated by experimental data on dynamical nuclear polarization.


Sign in / Sign up

Export Citation Format

Share Document