MAGNETIC COUPLING CONSTANTS AND SPIN DENSITY DISTRIBUTIONS FOR CYANO-BRIDGED Gd(III)-Fe(III) AND Gd(III)-Cr(III) COMPOUNDS: BROKEN-SYMMETRY AND DENSITY FUNCTIONAL THEORY CALCULATIONS

2005 ◽  
Vol 19 (15n17) ◽  
pp. 2538-2543 ◽  
Author(s):  
YI QUAN ZHANG ◽  
CHENG LIN LUO ◽  
ZHI YU

Magnetic coupling constants J for the complete structures of [ Gd(capro) 2( H 2 O )4 Cr(CN) 6]• H 2 O (capro represents caprolactam) (a) and trans-[ Fe(CN) 4(μ- CN )2 Gd ( H 2 O )4 (bpy) ]•4 H 2 O •1.5 bpy (b) have been calculated using hybrid density functional theory (DFT) B3LYP combined with a modified broken symmetry approach (BS). The calculated J value of -0.24 cm-1 for a is very close to the experimental -0.33 cm-1. They both show the antiferromagnetic interaction between Gd(III) and Cr(III) . For b, although the sign of the calculated J value of 4.24 cm-1 is different from that of the experimental -0.38 cm-1, the two values both show the weak magnetic coupling interaction between Gd(III) and Fe(III) . The spin density distributions are discussed on the basis of Mulliken population analysis. For complexes a and b, both transition metal ( Fe(III) or Cr(III) ) and rare earth Gd(III) display a spin polarization effect on the surrounding atoms, where a counteraction of the opposite polarization effects leads to a low spin density on the bridging ligand C1N1 . For the compounds Gd(III) - Cr(III) (a) and Gd(III) - Fe(III) (b) in the HS states, Cr(III) has stronger spin polarization influence on the bridging atoms than Fe(III) even causing the positive spin population on the bridging atom N1 .

2006 ◽  
Vol 05 (spec01) ◽  
pp. 501-514 ◽  
Author(s):  
HAIYAN WEI ◽  
ZHIDA CHEN

The magnetic exchange interactions for five representative triangular Copper(II) complexes: antiferromagnetic Cu 3( TiPB )6 (1), [ Cu 3(μ3- OH )( aaat )3( H 2 O )3]2+ (2), [ PPN ]2 [ Cu 3(μ3- O )(μ- pz )3 Cl 3] (3), [ PPN ][ Cu 3(μ3- OH )(μ- pz )3 Cl 3] (4) and ferromagnetic [ Cu 3(2- CH 3 C 6 H 4 CO 2)4{( C 2 H 5)2 NC 2 H 4 O }2 H 2 O ] (5) are investigated by using density functional theory combined with broken-symmetry approach (DFT-BS) and ab initio CASPT2 method. Our calculated results show that DFT-BS has remarkable dependence on the particular chosen XC functionals and is system-dependent, while the calculations at CASPT2 level of theory are able to give the accurate magnetic coupling constants. Qualitatively, the two theoretical methods reproduce consistently the linear correlation between the magnetic coupling constants and the departure of the (μ3- O ) oxygen atom from the { Cu3 } plane in the complexes (3) and (4). Spin population analyses reveal that the DFT-BS method overestimates the spin electronic delocalization from the Cu(II) center to the bridging ligands.


2005 ◽  
Vol 105 (6) ◽  
pp. 817-825 ◽  
Author(s):  
M. Borgh ◽  
M. Toreblad ◽  
M. Koskinen ◽  
M. Manninen ◽  
S. Åberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document