On the structure and patterns of von Kármán vortices in two-dimensional high Reynolds number flows

2020 ◽  
Vol 32 (11) ◽  
pp. 116601
Author(s):  
David R. Lewis ◽  
Timour Radko
1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

2017 ◽  
Vol 14 (06) ◽  
pp. 1750068 ◽  
Author(s):  
Lucy T. Zhang

Immersed methods are considered as a class of nonboundary-fitted meshing technique for simulating fluid–structure interactions. However, the conventional approach of coupling the fluid and solid domains, as in the immersed boundary method and the immersed finite element method, often cannot handle high Reynolds number flows interacting with moving and deformable solids. As the solid dynamics is imposed by the fluid dynamics, it often leads to unrealistically large deformation of the solid in cases of high Reynolds number flows. The first attempt in resolving this issue was proposed in the modified immersed finite element method (mIFEM), however, some terms were determined heuristically. In this paper, we provide a full and rigorous derivation for the mIFEM with corrections to the previously proposed terms, which further extends the accuracy of the algorithm. In the “swapped” coupling logic, we solve for the dynamics of the solid, and then numerically impose it to the background fluid, which allows the solid to control its own dynamics and governing laws instead of following that of the fluid. A few examples including a biomedical engineering application are shown to demonstrate the capability in handling large Reynolds number flows using the derived mIFEM.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012030
Author(s):  
E I Ivashchenko ◽  
M Yu Hrebtov ◽  
R I Mullyadzhanov

Abstract Large-eddy simulations are performed to investigate the cavitating flow around two dimensional hydrofoil section with angle of attack of 9° and high Reynolds number of 1.3×106. We use the Schnerr-Sauer model for accurate phase transitions modelling. Instantaneous velocity fields are compared successfully with PIV data using the methodology of conditional averaging to take into account only the liquid phase characteristics as in PIV. The presence of two frequencies in a spectrum corresponding to the full and partial cavity detachments is analysed.


Sign in / Sign up

Export Citation Format

Share Document