scholarly journals Modeling of emittance growth due to Coulomb collisions in plasma-based accelerators

2020 ◽  
Vol 27 (11) ◽  
pp. 113105
Author(s):  
Y. Zhao ◽  
R. Lehe ◽  
A. Myers ◽  
M. Thévenet ◽  
A. Huebl ◽  
...  
Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


1999 ◽  
Vol 61 (1) ◽  
pp. 89-106 ◽  
Author(s):  
M. G. CADJAN ◽  
M. F. IVANOV

The Langevin approach to the kinetics of a collisional plasma is developed. Some collision models are considered, and the corresponding stochastic differential equations are derived. These equations can be regarded as an alternative to the description of a plasma in terms of a distribution function. The method developed here allows one to simulate plasma processes, taking account of both collective kinetics effects and Coulomb collisions. Results of the numerical simulation of the intervention of laser pulses with an overdense plasma are presented. The dependence of the absorption coefficient on the plasma parameters is calculated. The features of the plasma dynamics under the action of intense laser radiation are observed and discussed. The results of numerical tests of the validity of this method are also presented.


1998 ◽  
Vol 57 (2) ◽  
pp. 293-297
Author(s):  
S V Vladimirov ◽  
O Ishihara

Sign in / Sign up

Export Citation Format

Share Document