scholarly journals Ring polymer quantization of the photon field in polariton chemistry

2021 ◽  
Vol 154 (4) ◽  
pp. 044109
Author(s):  
Sutirtha N. Chowdhury ◽  
Arkajit Mandal ◽  
Pengfei Huo
Keyword(s):  
2020 ◽  
Author(s):  
Sutirtha N. Chowdhury ◽  
Arkajit Mandal ◽  
Pengfei Huo

We use the ring-polymer (RP) representation to quantize the radiation field inside an optical cavity to investigate polariton quantum dynamics. Using a charge transfer model coupled to an optical cavity, we demonstrate that the RP quantization of the photon field provides accurate rate constants of the polariton mediated electron transfer (PMET) reaction compared to the Fermi's Golden rule. Because RP quantization uses extended phase space to describe the photon field, it significantly reduces the computational costs compared to the commonly used Fock states description of the radiation field. Compared to the other quasi-classical descriptions of the photon field, such as the classical Wigner model, the RP representation provides a much more accurate description of the polaritonic quantum dynamics, because it properly preserves the quantum distribution of the photonic DOF throughout the quantum dynamics propagation of the molecule-cavity hybrid system, whereas the classical Wigner model fails to do so. This work demonstrates the possibility of using the ring-polymer description to treat the quantized radiation field in polariton chemistry, offering an accurate and efficient approach for future investigations in cavity quantum electrodynamics.


2020 ◽  
Author(s):  
Sutirtha N. Chowdhury ◽  
Arkajit Mandal ◽  
Pengfei Huo

We use the ring-polymer (RP) representation to quantize the radiation field inside an optical cavity to investigate polariton quantum dynamics. Using a charge transfer model coupled to an optical cavity, we demonstrate that the RP quantization of the photon field provides accurate rate constants of the polariton mediated electron transfer (PMET) reaction compared to the Fermi's Golden rule. Because RP quantization uses extended phase space to describe the photon field, it significantly reduces the computational costs compared to the commonly used Fock states description of the radiation field. Compared to the other quasi-classical descriptions of the photon field, such as the classical Wigner model, the RP representation provides a much more accurate description of the polaritonic quantum dynamics, because it properly preserves the quantum distribution of the photonic DOF throughout the quantum dynamics propagation of the molecule-cavity hybrid system, whereas the classical Wigner model fails to do so. This work demonstrates the possibility of using the ring-polymer description to treat the quantized radiation field in polariton chemistry, offering an accurate and efficient approach for future investigations in cavity quantum electrodynamics.


2011 ◽  
Vol 19 (14) ◽  
pp. 13268 ◽  
Author(s):  
J. F. Dynes ◽  
Z. L. Yuan ◽  
A. W. Sharpe ◽  
O. Thomas ◽  
A. J. Shields

Author(s):  
Iurii Chubak ◽  
Christos N. Likos ◽  
Sergei A. Egorov

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 242
Author(s):  
Joanna Halun ◽  
Pawel Karbowniczek ◽  
Piotr Kuterba ◽  
Zoriana Danel

The calculations of the dimensionless layer monomer density profiles for a dilute solution of phantom ideal ring polymer chains and star polymers with f=4 arms in a Θ-solvent confined in a slit geometry of two parallel walls with repulsive surfaces and for the mixed case of one repulsive and the other inert surface were performed. Furthermore, taking into account the Derjaguin approximation, the dimensionless layer monomer density profiles for phantom ideal ring polymer chains and star polymers immersed in a solution of big colloidal particles with different adsorbing or repelling properties with respect to polymers were calculated. The density-force relation for the above-mentioned cases was analyzed, and the universal amplitude ratio B was obtained. Taking into account the small sphere expansion allowed obtaining the monomer density profiles for a dilute solution of phantom ideal ring polymers immersed in a solution of small spherical particles, or nano-particles of finite size, which are much smaller than the polymer size and the other characteristic mesoscopic length of the system. We performed molecular dynamics simulations of a dilute solution of linear, ring, and star-shaped polymers with N=300, 300 (360), and 1201 (4 × 300 + 1-star polymer with four arms) beads accordingly. The obtained analytical and numerical results for phantom ring and star polymers are compared with the results for linear polymer chains in confined geometries.


2021 ◽  
Vol 23 (10) ◽  
pp. 6141-6153
Author(s):  
Jianwei Cao ◽  
Yanan Wu ◽  
Haitao Ma ◽  
Zhitao Shen ◽  
Wensheng Bian

Quantum dynamics and ring polymer molecular dynamics calculations reveal interesting dynamical and kinetic behaviors of an endothermic complex-forming reaction.


2020 ◽  
Vol 221 ◽  
pp. 501-525 ◽  
Author(s):  
Soumya Ghosh ◽  
Samuele Giannini ◽  
Kevin Lively ◽  
Jochen Blumberger

Exploring effects of quantizing nuclei in non-adiabatic dynamics for simulating charge transfer in a dimer of “ethylene-like-molecules” at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document