The skin-friction coefficient of a turbulent boundary layer modified by a large-eddy break-up device

2021 ◽  
Vol 33 (3) ◽  
pp. 035153
Author(s):  
I. C. Chan ◽  
R. Örlü ◽  
P. Schlatter ◽  
R. C. Chin
2011 ◽  
Vol 686 ◽  
pp. 507-533 ◽  
Author(s):  
M. Inoue ◽  
D. I. Pullin

AbstractA near-wall subgrid-scale (SGS) model is used to perform large-eddy simulation (LES) of the developing, smooth-wall, zero-pressure-gradient flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. Large-eddy simulations of the turbulent boundary layer are reported at Reynolds numbers ${\mathit{Re}}_{\theta } $ based on the free-stream velocity and the momentum thickness in the range ${\mathit{Re}}_{\theta } = 1{0}^{3} \text{{\ndash}} 1{0}^{12} $. Results include the inverse square-root skin-friction coefficient, $ \sqrt{2/ {C}_{f} } $, velocity profiles, the shape factor $H$, the von Kármán ‘constant’ and the Coles wake factor as functions of ${\mathit{Re}}_{\theta } $. Comparisons with some direct numerical simulation (DNS) and experiment are made including turbulent intensity data from atmospheric-layer measurements at ${\mathit{Re}}_{\theta } = O(1{0}^{6} )$. At extremely large ${\mathit{Re}}_{\theta } $, the empirical Coles–Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that LES is suggestive of the asymptotic, infinite Reynolds number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum ${\mathit{Re}}_{\theta } $ of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger ${\mathit{Re}}_{\theta } $ could be achieved with quad- or higher-precision arithmetic.


1993 ◽  
Vol 115 (3) ◽  
pp. 383-388 ◽  
Author(s):  
M. H. Hosni ◽  
H. W. Coleman ◽  
R. P. Taylor

Experimental measurements of profiles of mean velocity and distributions of boundary-layer thickness and skin friction coefficient from aerodynamically smooth, transitionally rough, and fully rough turbulent boundary-layer flows are presented for four surfaces—three rough and one smooth. The rough surfaces are composed of 1.27 mm diameter hemispheres spaced in staggered arrays 2, 4, and 10 base diameters apart, respectively, on otherwise smooth walls. The current incompressible turbulent boundary-layer rough-wall air flow data are compared with previously published results on another, similar rough surface. It is shown that fully rough mean velocity profiles collapse together when scaled as a function of momentum thickness, as was reported previously. However, this similarity cannot be used to distinguish roughness flow regimes, since a similar degree of collapse is observed in the transitionally rough data. Observation of the new data shows that scaling on the momentum thickness alone is not sufficient to produce similar velocity profiles for flows over surfaces of different roughness character. The skin friction coefficient data versus the ratio of the momentum thickness to roughness height collapse within the data uncertainty, irrespective of roughness flow regime, with the data for each rough surface collapsing to a different curve. Calculations made using the previously published discrete element prediction method are compared with data from the rough surfaces with well-defined roughness elements, and it is shown that the calculations are in good agreement with the data.


1999 ◽  
Vol 121 (1) ◽  
pp. 44-51 ◽  
Author(s):  
M. P. Schultz ◽  
G. W. Swain

Materials exposed in the marine environment, including those protected by antifouling paints, may rapidly become colonized by microfouling. This may affect frictional resistance and turbulent boundary layer structure. This study compares the mean and turbulent boundary layer velocity characteristics of surfaces covered with a marine biofilm with those of a smooth surface. Measurements were made in a nominally zero pressure gradient, boundary layer flow with a two-component laser Doppler velocimeter at momentum thickness Reynolds numbers of 5600 to 19,000 in a recirculating water tunnel. Profiles of the mean and turbulence velocity components, including the Reynolds shear stress, were measured. An average increase in the skin friction coefficient of 33 to 187 percent was measured on the fouled specimens. The skin friction coefficient was found to be dependent on both biofilm thickness and morphology. The biofilms tested showed varying effect on the Reynolds stresses when those quantities were normalized with the friction velocity.


2017 ◽  
Vol 820 ◽  
pp. 121-158 ◽  
Author(s):  
W. Cheng ◽  
D. I. Pullin ◽  
R. Samtaney ◽  
W. Zhang ◽  
W. Gao

We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to$Re_{D}=8.5\times 10^{5}$, where$Re_{D}$is Reynolds number based on the cylinder diameter$D$and the free-stream speed$U_{\infty }$. The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with$3.9\times 10^{3}\leqslant Re_{D}\leqslant 10^{5}$. Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of$Re_{D}$are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at$Re_{D}=8.5\times 10^{5}$, with a mesh of$8192\times 1024\times 256$, agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625–639) especially for the skin-friction coefficient, where a spike is produced by the laminar–turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with$Re_{D}$. Within the separated portion of the flow, mean-flow separation–reattachment bubbles are observed at some values of$Re_{D}$, with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation–reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.


The skin friction of the wall of a wind tunnel has been measured at a Mach number of 2.5 using the surface-tube technique. The Reynolds number (with the distance from the throat as the representative length) was of the order of 2 to 3 millions and the boundary layer was turbulent. The skin friction coefficient was much less than for a very small Mach number (the incompressible case) and the amount of the decrease agreed with calculation. The effect of a shock-wave of strength 2 was also investigated—the strength of a shock-wave is defined as the pressure rise through it divided by the static pressure in front of it. The shock-wave only affected the boundary layer for a few thicknesses upstream of its point of impingement even though it was strong enough to cause local separation. The results show: ( а ) That the surface, or Stanton, tube is a reliable means of measuring skin friction in spite of the large values (over a million with the second as the unit of time) of the velocity gradient at the wall, and that the skin friction coefficient does decrease with Mach number in the manner predicted by calculation. ( b ) That disturbances due to a shock-wave impinging on a turbulent boundary layer are only propagated upstream a few multiples of the boundary layer thicknesses even when the shock-wave is strong enough to cause local separation.


Sign in / Sign up

Export Citation Format

Share Document