ABOUT THE CALCULATION OF THE SKIN FRICTION COEFFICIENT OF THE TURBULENT BOUNDARY LAYER. THE RELAMINARIZATION CRITERION FOR THE LAYER

2013 ◽  
Vol 44 (6) ◽  
pp. 807-820
Author(s):  
Vladimir Victorovich Mikhailov ◽  
Nina Veniaminovna Samoilova
1993 ◽  
Vol 115 (3) ◽  
pp. 383-388 ◽  
Author(s):  
M. H. Hosni ◽  
H. W. Coleman ◽  
R. P. Taylor

Experimental measurements of profiles of mean velocity and distributions of boundary-layer thickness and skin friction coefficient from aerodynamically smooth, transitionally rough, and fully rough turbulent boundary-layer flows are presented for four surfaces—three rough and one smooth. The rough surfaces are composed of 1.27 mm diameter hemispheres spaced in staggered arrays 2, 4, and 10 base diameters apart, respectively, on otherwise smooth walls. The current incompressible turbulent boundary-layer rough-wall air flow data are compared with previously published results on another, similar rough surface. It is shown that fully rough mean velocity profiles collapse together when scaled as a function of momentum thickness, as was reported previously. However, this similarity cannot be used to distinguish roughness flow regimes, since a similar degree of collapse is observed in the transitionally rough data. Observation of the new data shows that scaling on the momentum thickness alone is not sufficient to produce similar velocity profiles for flows over surfaces of different roughness character. The skin friction coefficient data versus the ratio of the momentum thickness to roughness height collapse within the data uncertainty, irrespective of roughness flow regime, with the data for each rough surface collapsing to a different curve. Calculations made using the previously published discrete element prediction method are compared with data from the rough surfaces with well-defined roughness elements, and it is shown that the calculations are in good agreement with the data.


1999 ◽  
Vol 121 (1) ◽  
pp. 44-51 ◽  
Author(s):  
M. P. Schultz ◽  
G. W. Swain

Materials exposed in the marine environment, including those protected by antifouling paints, may rapidly become colonized by microfouling. This may affect frictional resistance and turbulent boundary layer structure. This study compares the mean and turbulent boundary layer velocity characteristics of surfaces covered with a marine biofilm with those of a smooth surface. Measurements were made in a nominally zero pressure gradient, boundary layer flow with a two-component laser Doppler velocimeter at momentum thickness Reynolds numbers of 5600 to 19,000 in a recirculating water tunnel. Profiles of the mean and turbulence velocity components, including the Reynolds shear stress, were measured. An average increase in the skin friction coefficient of 33 to 187 percent was measured on the fouled specimens. The skin friction coefficient was found to be dependent on both biofilm thickness and morphology. The biofilms tested showed varying effect on the Reynolds stresses when those quantities were normalized with the friction velocity.


The skin friction of the wall of a wind tunnel has been measured at a Mach number of 2.5 using the surface-tube technique. The Reynolds number (with the distance from the throat as the representative length) was of the order of 2 to 3 millions and the boundary layer was turbulent. The skin friction coefficient was much less than for a very small Mach number (the incompressible case) and the amount of the decrease agreed with calculation. The effect of a shock-wave of strength 2 was also investigated—the strength of a shock-wave is defined as the pressure rise through it divided by the static pressure in front of it. The shock-wave only affected the boundary layer for a few thicknesses upstream of its point of impingement even though it was strong enough to cause local separation. The results show: ( а ) That the surface, or Stanton, tube is a reliable means of measuring skin friction in spite of the large values (over a million with the second as the unit of time) of the velocity gradient at the wall, and that the skin friction coefficient does decrease with Mach number in the manner predicted by calculation. ( b ) That disturbances due to a shock-wave impinging on a turbulent boundary layer are only propagated upstream a few multiples of the boundary layer thicknesses even when the shock-wave is strong enough to cause local separation.


2016 ◽  
Vol 11 (3) ◽  
pp. 16-26
Author(s):  
Vladimir Kornilov ◽  
Andrey Boiko ◽  
Ivan Kavun ◽  
Anatoliy Popkov

A generalized analysis of the results of numerical and experimental studies of air blowing into a turbulent boundary layer through finely perforated surface consisting of alternating permeable and impermeable sections of varying length providing a sudden change in the flow conditions at the boundaries of these sections is presented. The air blowing coefficient Cb determined by the mass flow rate per unit area of the active perforated sample varied in the range from 0 to 0.008. It is shown that as Cb grows, the maximum reduction in the mean surface skin-friction coefficient CF, which is the value through the permeable area of perforated sample, reaches about 65 %. When keeping the equal mass flow rate Q for all tested combinations, the mean skin-friction coefficient remains constant, independent of geometrical parameters of permeable and impermeable sections. Increasing the length of the last permeable section leads to the growth of relaxation region which is characterized by the reduced skin friction values on the impermeable part of the flat plate.


2006 ◽  
Author(s):  
A. Kourta ◽  
G. Petit ◽  
J. C. Courty ◽  
J. P. Rosenblum

The control of subsonic high lift induced separation on airfoil may improve the flight envelope of current aircraft or even simplify the complex and heavy high-lift devices on commercial airframes. Until now, synthetic jets have proved a really interesting efficiency to delay or remove even leading-edge located separated areas on high-lift configuration but are not efficient for real scale aircrafts. In case of pressure-like separation (i.e. from trailing-edge), synthetic jets can be replaced by so the called “Vortex Generator Jets” which create strong longitudinal vortices that increase mixing in inner boundary layer and consequently the skin friction coefficient is increased to prevent separation. In this study, numerical simulations were undertaken on a generic three dimensional flat plate in order to quantify the effect of the longitudinal vortices on the natural skin friction coefficient. Both counter and co-rotative devices were tested at different exhaust velocities and distances between each others. Finally co-rotative vortex generators jets were tested on a three dimensional generic airfoil ONERA D. Results show a delay of the separation occurence but this solution does not seem to be as robust as synthetic jets. The study of jets spacing with respect to the efficiency of the devices shows a maximum for a given ratio of spacing to exhaust velocity.


Sign in / Sign up

Export Citation Format

Share Document