scholarly journals Hybrid reaction–diffusion and clock-and-wavefront model for the arrest of oscillations in the somitogenesis segmentation clock

2021 ◽  
Vol 31 (6) ◽  
pp. 063107
Author(s):  
Jesús Pantoja-Hernández ◽  
Víctor F. Breña-Medina ◽  
Moisés Santillán
2020 ◽  
Author(s):  
Jesús Pantoja-Hernández ◽  
Víctor F. Breña-medina ◽  
Moisés Santillán

AbstractThe clock and wavefront model is one of the most accepted models for explaining the embryonic process of somitogenesis. According to this model, somitogenesis is based upon the interaction between a genetic oscillator, known as segmentation clock, and a moving wavefront, which provides the positional information indicating where each pair of somites is formed. Recently, Cotterell et al. (2015) reported a conceptually different mathematical model for somitogenesis. The authors called it a progressive oscillatory reaction-diffusion (PORD) model. In this model, somitogenesis is driven by short-range interactions and the posterior movement of the front is a local, emergent phenomenon, which is not controlled by global positional information. With the PORD model, it was possible to explain some experimental observations that are incompatible with the clock and wavefront model. However the PORD model has the disadvantage of being quite sensitive to fluctuations. In this work, we propose a modified version of the PORD model in order to overcome this and others inconveniences. By means of numerical simulations and a numerical stability analysis, we demonstrate that the modified PORD model achieves the robustness characteristic of somitogenesis, when the effect of the wavefront is included.


Author(s):  
H.H. Rotermund

Chemical reactions at a surface will in most cases show a measurable influence on the work function of the clean surface. This change of the work function δφ can be used to image the local distributions of the investigated reaction,.if one of the reacting partners is adsorbed at the surface in form of islands of sufficient size (Δ>0.2μm). These can than be visualized via a photoemission electron microscope (PEEM). Changes of φ as low as 2 meV give already a change in the total intensity of a PEEM picture. To achieve reasonable contrast for an image several 10 meV of δφ are needed. Dynamic processes as surface diffusion of CO or O on single crystal surfaces as well as reaction / diffusion fronts have been observed in real time and space.


2006 ◽  
Vol 11 (2) ◽  
pp. 115-121 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,− div(|∇u1|p1−2∇u1) = λu1α11u2α12... unα1n,   x ∈ Ω,− div(|∇u2|p2−2∇u2) = λu1α21u2α22... unα2n,   x ∈ Ω, ... , − div(|∇un|pn−2∇un) = λu1αn1u2αn2... unαnn,   x ∈ Ω,ui = 0,   x ∈ ∂Ω,   i = 1, 2, ..., n,  where λ is a positive parameter, Ω is a bounded domain in RN (N > 1) with smooth boundary ∂Ω. In addition, we assume that 1 < pi < N for i = 1, 2, ..., n. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.


2019 ◽  
Author(s):  
Divya Bohra ◽  
Jehanzeb Chaudhry ◽  
Thomas Burdyny ◽  
Evgeny Pidko ◽  
wilson smith

<p>The environment of a CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) catalyst is intimately coupled with the surface reaction energetics and is therefore a critical aspect of the overall system performance. The immediate reaction environment of the electrocatalyst constitutes the electrical double layer (EDL) which extends a few nanometers into the electrolyte and screens the surface charge density. In this study, we resolve the species concentrations and potential profiles in the EDL of a CO<sub>2</sub>ER system by self-consistently solving the migration, diffusion and reaction phenomena using the generalized modified Poisson-Nernst-Planck (GMPNP) equations which include the effect of volume exclusion due to the solvated size of solution species. We demonstrate that the concentration of solvated cations builds at the outer Helmholtz plane (OHP) with increasing applied potential until the steric limit is reached. The formation of the EDL is expected to have important consequences for the transport of the CO<sub>2</sub> molecule to the catalyst surface. The electric field in the EDL diminishes the pH in the first 5 nm from the OHP, with an accumulation of protons and a concomitant depletion of hydroxide ions. This is a considerable departure from the results obtained using reaction-diffusion models where migration is ignored. Finally, we use the GMPNP model to compare the nature of the EDL for different alkali metal cations to show the effect of solvated size and polarization of water on the resultant electric field. Our results establish the significance of the EDL and electrostatic forces in defining the local reaction environment of CO<sub>2</sub> electrocatalysts.</p>


Sign in / Sign up

Export Citation Format

Share Document