Large eddy simulations of high-magnetic Reynolds number magnetohydrodynamic turbulence for non-helical and helical initial conditions: A study of two sub-grid scale models

2021 ◽  
Vol 33 (8) ◽  
pp. 085131
Author(s):  
Kiran Jadhav ◽  
Abhilash J. Chandy
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1340-1350 ◽  
Author(s):  
E. Lenormand ◽  
P. Sagaut ◽  
L. Ta Phuoc ◽  
P. Comte

Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012030
Author(s):  
E I Ivashchenko ◽  
M Yu Hrebtov ◽  
R I Mullyadzhanov

Abstract Large-eddy simulations are performed to investigate the cavitating flow around two dimensional hydrofoil section with angle of attack of 9° and high Reynolds number of 1.3×106. We use the Schnerr-Sauer model for accurate phase transitions modelling. Instantaneous velocity fields are compared successfully with PIV data using the methodology of conditional averaging to take into account only the liquid phase characteristics as in PIV. The presence of two frequencies in a spectrum corresponding to the full and partial cavity detachments is analysed.


2004 ◽  
Vol 16 (12) ◽  
pp. 4506-4534 ◽  
Author(s):  
Carlos B. da Silva ◽  
José C. F. Pereira

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Dario Amirante ◽  
Nicholas J. Hills

Large-eddy simulations (LES) of wall bounded, low Mach number turbulent flows are conducted using an unstructured finite-volume solver of the compressible flow equations. The numerical method employs linear reconstructions of the primitive variables based on the least-squares approach of Barth. The standard Smagorinsky model is adopted as the subgrid term. The artificial viscosity inherent to the spatial discretization is maintained as low as possible reducing the dissipative contribution embedded in the approximate Riemann solver to the minimum necessary. Comparisons are also discussed with the results obtained using the implicit LES (ILES) procedure. Two canonical test-cases are described: a fully developed pipe flow at a bulk Reynolds number Reb = 44 × 103 based on the pipe diameter, and a confined rotor–stator flow at the rotational Reynolds number ReΩ = 4 × 105 based on the outer radius. In both cases, the mean flow and the turbulent statistics agree well with existing direct numerical simulations (DNS) or experimental data.


AIAA Journal ◽  
2000 ◽  
Vol 38 (8) ◽  
pp. 1340-1350 ◽  
Author(s):  
E. Lenormand ◽  
P. Sagaut ◽  
L. Ta Phuoc ◽  
P. Comte

1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


Sign in / Sign up

Export Citation Format

Share Document