A low-cost polymerized hole-transporting material for high performance planar perovskite solar cells

2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  
2016 ◽  
Vol 94 (4) ◽  
pp. 352-359 ◽  
Author(s):  
Andrew M. Namespetra ◽  
Arthur D. Hendsbee ◽  
Gregory C. Welch ◽  
Ian G. Hill

Three low-cost propeller-shaped small molecules based on a triphenylamine core and the high-performance donor molecule 7,7′-[4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl]bis[6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole] (DTS(FBTTh2)2) were investigated as hole-transporting materials in perovskite solar cells. Each hole-transporting material was designed with highly modular side arms, allowing for different bandgaps and thin-film properties while maintaining a consistent binding energy of the highest occupied molecular orbitals to facilitate hole extraction from the perovskite active layer. Perovskite solar cell devices were fabricated with each of the three triphenylamine-based hole-transporting materials and DTS(FBTTh2)2 and were compared to devices with 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) hole-transporting layers. Each of our triphenylamine hole-transporting materials and DTS(FBTTh2)2 displayed surface morphologies that were considerably rougher than that of spiro-OMeTAD; a factor that may contribute to lower device performance. It was found that using inert, insulating polymers as additives with DTS(FBTTh2)2 reduced the surface roughness, resulting in devices with higher photocurrents.


2021 ◽  
Author(s):  
Kun-Mu Lee ◽  
Jui-Yu Yang ◽  
Ping-Sheng Lai ◽  
Ke-Jyun Luo ◽  
Ting Yu Yang ◽  
...  

A new cyclopentadithiophene (CPDT)-based organic small molecule serves as an efficient dopant-free hole transporting material (HTM) for perovskite solar cells (PSCs). Upon incorporation of two carbazole groups, the resulting CPDT-based...


2021 ◽  
Author(s):  
Xueqiao Li ◽  
Na Sun ◽  
Zhanfeng Li ◽  
Jinbo Chen ◽  
Qinjun Sun ◽  
...  

Perovskite solar cells (PSCs) have reached their highest efficiency with the state-of-the-art hole-transporting material (HTM) spiro-OMeTAD.


RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41903-41908 ◽  
Author(s):  
Zhanfeng Li ◽  
Jinbo Chen ◽  
Hui Li ◽  
Qi Zhang ◽  
Zhiliang Chen ◽  
...  

A low-cost spiro[3.3]heptane-2,6-dispirofluorene-based HTM termed SDF-OMeTAD has been designed and synthesized via a two-step reaction, representing a considerable simplification with respect to that of the well-known spiro-OMeTAD.


2018 ◽  
Vol 153 ◽  
pp. 104-108 ◽  
Author(s):  
Guifang Han ◽  
Wen Han Du ◽  
Bao-Li An ◽  
Annalisa Bruno ◽  
Shin Woei Leow ◽  
...  

2019 ◽  
Vol 7 (18) ◽  
pp. 5235-5243 ◽  
Author(s):  
Arthur Connell ◽  
Zhiping Wang ◽  
Yen-Hung Lin ◽  
Peter C. Greenwood ◽  
Alan A. Wiles ◽  
...  

Organic hole-transporting materials (HTM) have shown excellent ability in achieving high efficiency perovskite solar cells.


2015 ◽  
Vol 3 (23) ◽  
pp. 12159-12162 ◽  
Author(s):  
M. L. Petrus ◽  
T. Bein ◽  
T. J. Dingemans ◽  
P. Docampo

EDOT-OMeTPA was prepared in a simple condensation reaction. When applied to perovskite solar cells, the new hole transporter shows comparable performance to state-of-the-art Spiro-OMeTAD; however the estimated cost contribution is two orders of magnitude lower.


Sign in / Sign up

Export Citation Format

Share Document