Three-dimensional direct numerical simulation of flow induced by an oscillating sphere close to a plane boundary

2021 ◽  
Vol 33 (9) ◽  
pp. 097106
Author(s):  
Samayam Satish ◽  
Justin S. Leontini ◽  
Richard Manasseh ◽  
S. A. Sannasiraj ◽  
V. Sundar
2001 ◽  
Author(s):  
Shriram B. Pillapakkam ◽  
Pushpendra Singh

Abstract A three dimensional finite element scheme for Direct Numerical Simulation (DNS) of viscoelastic two phase flows is implemented. The scheme uses the Level Set Method to track the interface and the Marchuk-Yanenko operator splitting technique to decouple the difficulties associated with the governing equations. Using this numerical scheme, the shape of Newtonian drops in a simple shear flow of viscoelastic fluid and vice versa are analyzed as a function of Capillary number, Deborah number and polymer concentration. The viscoelastic fluid is modeled via the Oldroyd-B model. The role of viscoelastic stresses in deformation of a drop subjected to simple shear flow and its effect on the steady state shape is analyzed. Our results compare favorably with existing experimental data and also help in understanding the role of viscoelastic stresses in drop deformation.


2019 ◽  
Vol 221 ◽  
pp. 01021
Author(s):  
Aleksandr Kraus ◽  
Evgeny Kraus ◽  
Ivan Shabalin

A two-dimensional and three-dimensional non-stationary problem of the interaction of a homogeneous impactor and a heterogeneous structure made of steel and ceramics and placed in a Kevlar pocket is considered. The model of the human body is a plate of gelatine with cylindrical inserts-imitators of human bones. The results of numerical simulation using different approaches for describing heterogeneous media are compared. On the basis of direct numerical simulation, it is shown that the gradient armor plate (steel + B4C) has the best weight and size parameters.


2004 ◽  
Vol 2004.53 (0) ◽  
pp. 325-326
Author(s):  
Yoshito TANAKA ◽  
Noritaka AOTA ◽  
Masato YOSHINO ◽  
Masaharu MATSUBARA ◽  
Atsushi SASAKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document