Noise reduction of sinusoidal wavy cylinder in subcritical flow regime

2021 ◽  
Vol 33 (10) ◽  
pp. 105120
Author(s):  
Honglei Bai ◽  
Zhenbo Lu ◽  
Renke Wei ◽  
Yannian Yang ◽  
Yu Liu
2017 ◽  
Vol 9 (4) ◽  
pp. 169-179 ◽  
Author(s):  
Prasanna Welahettige ◽  
Bernt Lie ◽  
Knut Vaagsaether

The aim of this paper is to study flow regime changes of Newtonian fluid flow in an open Venturi channel. The simulations are based on the volume of fluid method with interface tracking. ANSYS Fluent 16.2 (commercial code) is used as the simulation tool. The simulation results are validated with experimental results. The experiments were conducted in an open Venturi channel with water at atmospheric condition. The inlet water flow rate was 400 kg/min. The flow depth was measured by using ultrasonic level sensors. Both experiment and simulation were done for the channel inclination angles 0°, −0.7°, and −1.5°. The agreement between computed and experimental results is satisfactory. At horizontal condition, flow in the channel is supercritical until contraction and subcritical after the contraction. There is a hydraulic jump separating the supercritical and subcritical flow. The position of the hydraulic jump oscillates within a region of about 100 mm. Hydraulic jumps coming from the contraction walls to the upstream flow are the main reasons for the conversion of supercritical flow into subcritical flow. An “oblique jump” can be seen where there is a supercritical flow in the contraction. There is a triple point in this oblique jump: the triple point consists of two hydraulic jumps coming from the contraction walls and the resultant wave. The highest flow depth and the lowest velocity in the triple point are found at the oblique jump.


Author(s):  
Irena Gołębiowska ◽  
Maciej Dutkiewicz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document