The onset of dissipative chaos driven by nonequilibrium conditions

2022 ◽  
Vol 156 (2) ◽  
pp. 024103
Author(s):  
Feng Zhang ◽  
Jin Wang
Author(s):  
Ian M. Anderson ◽  
Arnulf Muan ◽  
C. Barry Carter

Oxide mixtures which feature a coexistence of phases with the wüstite and spinel structures are considered model systems for the study of solid-state reaction kinetics, phase boundaries, and thin-film growth, and such systems are especially suited to TEM studies. (In this paper, the terms “wüstite” and “spinel” will refer to phases of those structure types.) The study of wüstite-spinel coexistence has been limited mostly to systems near their equilibrium condition, where the assumptions of local thermodynamic equilibrium are valid. The cation-excess spinels of the type Ni2(1+x)Ti1-xO4, which reportedly exist only above 1375°C4, provide an excellent system for the study of wüstite-spinel coexistence under highly nonequilibrium conditions. The nature of these compounds has been debated in the literature. X-ray and neutron powder diffraction patterns have been used to advocate the existence of a single-phase, non- stoichiometric spinel. TEM studies of the microstructure have been used to suggest equilibrium coexistence of a stoichiometric spinel, Ni2TiO4, and a wüstite phase; this latter study has shown a coexistence of wüstite and spinel phases in specimens thought to have been composed of a single, non- stoichiometric spinel phase. The microstructure and nature of this phase coexistence is the focus of this study. Specimens were prepared by ball-milling a mixture of NiO and TiO2 powders with 10 wt.% TiO2. The mixture was fired in air at 1483°C for 5 days, and then quenched to room temperature. The aggregate thus produced was highly porous, and needed to be infiltrated prior to TEM sample preparation, which was performed using the standard techniques of lapping, dimpling, and ion milling.


2012 ◽  
Vol 15 (4) ◽  
pp. 329-341 ◽  
Author(s):  
A. Bousri ◽  
Khedidja Bouhadef ◽  
H. Beji ◽  
Rachid Bennacer ◽  
R. Nebbali

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4540
Author(s):  
Thomas Vasileiadis ◽  
Heng Zhang ◽  
Hai Wang ◽  
Mischa Bonn ◽  
George Fytas ◽  
...  

Telecommunication devices exploit hypersonic gigahertz acoustic phonons to mediate signal processing with microwave radiation, and charge carriers to operate various microelectronic components. Potential interactions of hypersound with charge carriers can be revealed through frequency- and momentum-resolved studies of acoustic phonons in photoexcited semiconductors. Here, we present an all-optical method for excitation and frequency-, momentum-, and space-resolved detection of gigahertz acoustic waves in a spatially confined model semiconductor. Lamb waves are excited in a bare silicon membrane using femtosecond optical pulses and detected with frequency-domain micro-Brillouin light spectroscopy. The population of photoexcited gigahertz phonons displays a hundredfold enhancement as compared with thermal equilibrium. The phonon spectra reveal Stokes–anti-Stokes asymmetry due to propagation, and strongly asymmetric Fano resonances due to coupling between the electron-hole plasma and the photoexcited phonons. This work lays the foundation for studying hypersonic signals in nonequilibrium conditions and, more generally, phonon-dependent phenomena in photoexcited nanostructures.


Author(s):  
Brenden W. Hamilton ◽  
Michael N. Sakano ◽  
Chunyu Li ◽  
Alejandro Strachan

Shock loading takes materials from ambient conditions to extreme conditions of temperature and nonhydrostatic stress on picosecond timescales. In molecular materials the fast loading results in temporary nonequilibrium conditions with overheated low-frequency modes and relatively cold, high-frequency, intramolecular modes; coupling the shock front with the material's microstructure and defects results in energy localization in hot spots. These processes can conspire to lead to a material response not observed under quasi-static loads. This review focuses on chemical reactions induced by dynamical loading, the understanding of which requires bringing together materials science, shock physics, and condensed matter chemistry. Recent progress in experiments and simulations holds the key to the answer of long-standing grand challenges with implications for the initiation of detonation and life on Earth. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document