Modeling Urban Growth in Data-Sparse Environments: A New Approach

2007 ◽  
Vol 34 (5) ◽  
pp. 858-883 ◽  
Author(s):  
Michail Fragkias ◽  
Karen C Seto

Although there exist numerous urban growth models, most have significant data input requirements, limiting their utility in a developing-world context. Yet, it is precisely in the developing world where there is an urgent need for urban growth models and scenarios since most expected urban growth in the next two decades will occur in such countries. This paper describes a physical urban growth model that requires few, but widely available, spatially explicit data. Utilizing binary urban/nonurban maps generated by satellite imaging, our model can inform urban planners and policy makers about the most probable locations and periods of future urban land-use change. Using a discrete choice framework, the model employs a spatially explicit logistic regression analysis to evaluate probabilities of urban growth for a baseline period. It calibrates parameters, validates results, predicts urban land-use change and examines future growth scenarios. Future growth scenarios can be generated through the inclusion of land prohibited from development, transportation routes, or new planned urban developments. A novel and important element of the model is the incorporation of an explicit policy-making framework that captures and reduces model uncertainty (theory and specification uncertainties), effectively addressing problems of predictive bias; this framework also allows the user or policy maker to associate predictions with a loss function. The model is applied to three cities in southern China that have experienced dramatic urban land growth in the last two decades. From 1988 to 1999, urban land in the region increased by 451.6% or at an annual rate of approximately 16.5%. Results show that the model achieves 73% – 77% accuracy for different cities at 30 m and 60 m resolutions. Aggregating the predictions to the county/administrative district shows that prediction through thresholding underperforms in comparison to the technique of sample enumeration.

2020 ◽  
Vol 5 (1) ◽  
pp. 129-139
Author(s):  
Zipan Cai ◽  
Vladimir Cvetkovic ◽  
Jessica Page

In the context of accelerated urbanization, socioeconomic development, and population growth, as well as the rapid advancement of information and communication technology (ICT), urban land is rapidly expanding worldwide. Unplanned urban growth has led to the low utilization efficiency of land resources. Also, ecological and agricultural lands are continuously sacrificed for urban construction, which in the long-term may severely impact the health of citizens in cities. A thorough understanding of the mechanisms and driving forces of a city’s urban land use changes, including the influence of ICT development, is therefore crucial to the formation of optimal and feasible urban planning in the new era. Taking Nanjing as a study case, this article attempts to explore the measurable “smart” driving indicators of urban land use change and analyze the tapestry of the relationship between these and urban land use change. Different from the traditional linear regression analysis method of driving force of urban land use change, this study focuses on the interaction relationship and the underlying causal relationship among various “smart” driving factors, so it adopts a fuzzy statistical method, namely the grey relational analysis (GRA). Through the integration of literature research and known effective data, five categories of “smart” indicators have been taken as the primary driving factors: industry and economy, transportation, humanities and science, ICT systems, and environmental management. The results show that these indicators have different impacts on driving urban built-up land growth. Accordingly, optimization possibilities and recommendations for development strategies are proposed to realize a “smarter” development direction in Nanjing. This article confirms the effectiveness of GRA for studies on the driving mechanisms of urban land use change and provides a theoretical basis for the development goals of a smart city.


Pedosphere ◽  
2009 ◽  
Vol 19 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Jin-Song DENG ◽  
Ke WANG ◽  
Jun LI ◽  
Yan-Hua DENG

Sign in / Sign up

Export Citation Format

Share Document