Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation

2013 ◽  
Vol 43 (12) ◽  
pp. 1149-1153 ◽  
Author(s):  
V I Sokolov ◽  
N V Marusin ◽  
V Ya Panchenko ◽  
A G Savelyev ◽  
V N Seminogov ◽  
...  
2013 ◽  
Vol 745-746 ◽  
pp. 131-135
Author(s):  
Hu Rui Yan ◽  
Nuo Fan Ding ◽  
Gang Wu ◽  
Ping Xiong Yang ◽  
Jun Hao Chu ◽  
...  

In the process of BiFeO3 film preparation by magnetron sputtering, Bi element is volatile, leading to the films which often appear impurity phases. Therefore, Both Bi excessive 5% (B1.05FO) and 8% (B1.08FO) BFO film in Si substrate were prepared by magnetron sputtering. X-Ray Diffraction (XRD) results showed that the BFO thin films fabricated in the Si substrate are perovskite structure, that the B1.08FO film appeared less impurity phases than B1.05FO film, and that stress due to substrate lattice mismatch caused the shift of XRD patterns. In Raman study, it was concluded that both B1.08FO film and B1.05FO film appeared ten Raman peaks in the range from 50cm-1 to 800cm-1, and that B1.08FO Raman peaks intensity was stronger in 137.1cm-1.168.5cm-1 and 215.3cm-1. Spectroscopic ellipsometry test showed that the refractive index and the extinction coefficient of B1.05FO film were 2.25 and 0.07 respectively in 600 nm with 2.67eV of energy gap; the refractive index and the extinction coefficient of B1.08FO film were 2.14 and 0.05 in 600 nm respectively with 2.71eV of energy gap. Atomic Force Microscope (AFM) was used to characterize the film surface morphology, finding that the B1.08FO film prepared in Si substrate was denser while grain size and surface roughness were smaller.


2001 ◽  
Vol 703 ◽  
Author(s):  
Hiroki Yamamoto ◽  
Takashi Naito ◽  
Kazuyuki Hirao

ABSTRACTOptical non-linearity of cobalt oxide with SiO2-TiO2 additives was investigated, and the change mechanism of the refractive index (n) and extinction coefficient (k), based on the relation between band structure and optical non-linearity of the thin films, was discussed. Refractive index and extinction coefficient of Co3O4 thin films in the ground state were 3.17 and 0.42, respectively. Both n and k decreased by irradiation from a pulse laser with 650 nm of wavelength (1.91eV). These values in the excited state were 2.91 and 0.41, respectively. n2 estimated from the change of n and k was −2.8 ×10−11 m2/W. The film had a band gap corresponding to 2.06eV, indicating that it was widened by the band filling effect during the laser irradiation at 1.91eV, and this led to the decrease in absorption coefficient and refractive index.


2017 ◽  
Vol 25 (22) ◽  
pp. 27077 ◽  
Author(s):  
Peter Nestler ◽  
Christiane A. Helm

Open Physics ◽  
2008 ◽  
Vol 6 (2) ◽  
Author(s):  
Milen Nenkov ◽  
Tamara Pencheva

AbstractA new approach for determination of refractive index dispersion n(λ) (the real part of the complex refractive index) and thickness d of thin films of negligible absorption and weak dispersion is proposed. The calculation procedure is based on determination of the phase thickness of the film in the spectral region of measured transmittance data. All points of measured spectra are included in the calculations. Barium titanate thin films are investigated in the spectral region 0.38–0.78 μm and their n(λ) and d are calculated. The approach is validated using Swanepoel’s method and it is found to be applicable for relatively thin films when measured transmittance spectra have one minimum and one maximum only.


Data in Brief ◽  
2020 ◽  
Vol 28 ◽  
pp. 104903
Author(s):  
Dmitrij A. Belousov ◽  
Vadim S. Terent'ev ◽  
Evgeny V. Spesivtsev ◽  
Victor P. Korolkov

Sign in / Sign up

Export Citation Format

Share Document