scholarly journals Molecular characterisation of Interleukin-2 in two Australian marsupials (the tammar wallaby, Notamacropus eugenii, and the Tasmanian devil, Sarcophilus harrisii) facilitates the development of marsupial-specific immunological reagents

2019 ◽  
Vol 41 (1) ◽  
pp. 39 ◽  
Author(s):  
Lauren J. Young ◽  
Jessica Gurr ◽  
Katrina Morris ◽  
Sabine Flenady ◽  
Katherine Belov

Interleukin-2 (IL-2) is an important regulator of cellular immunity in mammals. For many years, our inability to identify the expression of this cytokine in marsupials hindered our capacity to progress studies in metatherian immunology. Here, we report the use of molecular techniques to characterise the IL-2 gene for the tammar wallaby (Notamacropus eugenii) and the Tasmanian devil (Sarcophilus harrisii), which allowed the prediction of the structure and probable functions of the IL-2 proteins of these species. Deduced marsupial IL-2 proteins show considerable sequence identity to each other and to common brushtail possum (Trichosurus vulpecula) IL-2 (≥65%) but shared only 35% (tammar wallaby) and 32% (Tasmanian devil) identity with human IL-2. This difference means that reagents used to study IL-2 in human and other eutherians are unlikely to cross-react with marsupials. As a key step in furthering our ability to study cellular immune responses in marsupials and, more specifically, the susceptibility of macropodoid marsupials to intracellular pathogens, a polyclonal antibody was designed for the detection and future investigation of tammar wallaby IL-2 protein expression. The molecular data and polyclonal antibody described herein will support our development of gene probes and immunological reagents that will aid studies of infection and disease in marsupials.

2021 ◽  
Author(s):  
Emma F Harding ◽  
Alice G Russo ◽  
Grace J H Yan ◽  
Paul D Waters ◽  
Peter A White

Abstract Marsupial viruses are understudied compared to their eutherian mammal counterparts, although they may pose severe threats to vulnerable marsupial populations. Genomic viral integrations, termed endogenous viral elements (EVEs) could protect the host from infection. It is widely known past viral infections and EVEs play an active role in antiviral defence in invertebrates and plants. This study aimed to characterise actively transcribed EVEs in Australian marsupial species, because they may play an integral role in cellular defence against viruses. This study screened publicly available RNA sequencing datasets (n=35) and characterised 200 viral transcripts from thirteen Australian marsupial species. Of the 200 transcripts, 188 originated from either Bornaviridae, Filoviridae or Parvoviridae EVEs. The other 12 transcripts were from putative active infections from members of the Herpesviridae and Anelloviridae, and Hepadnaviridae. EVE transcripts (n=188) were mapped to marsupial genomes (where available, n=5/13) to identify the genomic insertion sites. Of the 188 transcripts, 117 mapped to 39 EVEs within the koala, bare-nosed wombat, tammar wallaby, brushtail possum and Tasmanian devil genomes. The remaining eight animals had no available genome (transcripts n=71). Every marsupial have Bornaviridae, Filoviridae and Parvoviridae EVEs, a trend widely observed in eutherian mammals. Whilst eutherian bornavirus EVEs are predominantly nucleoprotein-derived, marsupial bornavirus EVEs demonstrate a surprising replicase gene bias. We predicted these widely distributed EVEs were conserved within marsupials from ancient germline integrations, as many were over 65 million years old. One bornavirus replicase EVE, present in six marsupial genomes, was estimated to be 160 million years old, predating the American-Australian marsupial split. We considered transcription of these EVEs through small non-coding RNA as an ancient viral defence. Consistent with this, in koala small RNA sequence datasets we detected Bornaviridae replicase and Filoviridae nucleoprotein produced piRNA. These were enriched in testis tissue, suggesting they could protect marsupials from vertically transmitted viral integrations.


2018 ◽  
Vol 30 (5) ◽  
pp. 721 ◽  
Author(s):  
Carla Moros-Nicolás ◽  
Pascale Chevret ◽  
María José Izquierdo-Rico ◽  
William V. Holt ◽  
Daniela Esteban-Díaz ◽  
...  

The zona pellucida (ZP) is an extracellular matrix that surrounds mammalian oocytes. In eutherians it is formed from three or four proteins (ZP1, ZP2, ZP3, ZP4). In the few marsupials that have been studied, however, only three of these have been characterised (ZP2, ZP3, ZP4). Nevertheless, the composition in marsupials may be more complex, since a duplication of the ZP3 gene was recently described in one species. The aim of this work was to elucidate the ZP composition in marsupials and relate it to the evolution of the ZP gene family. For that, an in silico and molecular analysis was undertaken, focusing on two South American species (gray short-tailed opossum and common opossum) and five Australian species (brushtail possum, koala, Bennett’s wallaby, Tammar wallaby and Tasmanian devil). This analysis identified the presence of ZP1 mRNA and mRNA from two or three paralogues of ZP3 in marsupials. Furthermore, evidence for ZP1 and ZP4 pseudogenes in the South American subfamily Didelphinae and for ZP3 pseudogenes in two marsupials is provided. In conclusion, two different composition models are proposed for marsupials: a model with four proteins (ZP1, ZP2 and ZP3 (two copies)) for the South American species and a model with six proteins (ZP1, ZP2, ZP3 (three copies) and ZP4) for the Australasian species.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mercia Rasoanoro ◽  
Steven M. Goodman ◽  
Milijaona Randrianarivelojosia ◽  
Mbola Rakotondratsimba ◽  
Koussay Dellagi ◽  
...  

Abstract Background Numerous studies have been undertaken to advance knowledge of apicomplexan parasites infecting vertebrates, including humans. Of these parasites, the genus Plasmodium has been most extensively studied because of the socio-economic and public health impacts of malaria. In non-human vertebrates, studies on malaria or malaria-like parasite groups have been conducted but information is far from complete. In Madagascar, recent studies on bat blood parasites indicate that three chiropteran families (Miniopteridae, Rhinonycteridae, and Vespertilionidae) are infected by the genus Polychromophilus with pronounced host specificity: Miniopterus spp. (Miniopteridae) harbour Polychromophilus melanipherus and Myotis goudoti (Vespertilionidae) is infected by Polychromophilus murinus. However, most of the individuals analysed in previous studies were sampled on the western and central portions of the island. The aims of this study are (1) to add new information on bat blood parasites in eastern Madagascar, and (2) to highlight biotic and abiotic variables driving prevalence across the island. Methods Fieldworks were undertaken from 2014 to 2016 in four sites in the eastern portion of Madagascar to capture bats and collect biological samples. Morphological and molecular techniques were used to identify the presence of haemosporidian parasites. Further, a MaxEnt modelling was undertaken using data from Polychromophilus melanipherus to identify variables influencing the presence of this parasite Results In total, 222 individual bats belonging to 17 species and seven families were analysed. Polychromophilus infections were identified in two families: Miniopteridae and Vespertilionidae. Molecular data showed that Polychromophilus spp. parasitizing Malagasy bats form a monophyletic group composed of three distinct clades displaying marked host specificity. In addition to P. melanipherus and P. murinus, hosted by Miniopterus spp. and Myotis goudoti, respectively, a novel Polychromophilus lineage was identified from a single individual of Scotophilus robustus. Based on the present study and the literature, different biotic and abiotic factors are shown to influence Polychromophilus infection in bats, which are correlated based on MaxEnt modelling. Conclusions The present study improves current knowledge on Polychromophilus blood parasites infecting Malagasy bats and confirms the existence of a novel Polychromophilus lineage in Scotophilus bats. Additional studies are needed to obtain additional material of this novel lineage to resolve its taxonomic relationship with known members of the genus. Further, the transmission mode of Polychromophilus in bats as well as its potential effect on bat populations should be investigated to complement the results provided by MaxEnt modelling and eventually provide a comprehensive picture of the biology of host-parasite interactions.


2003 ◽  
Vol 66 (12) ◽  
pp. 2349-2354 ◽  
Author(s):  
MICHAEL L. PERDUE ◽  
JEFF KARNS ◽  
JIM HIGGINS ◽  
JO ANN VAN KESSEL

A preparation of Bacillus anthracis (Sterne strain) spores was used to evaluate commercially available reagents and portable equipment for detecting anthrax contamination by using real-time PCR and was used to assess the fate of spores added directly to bulk tank milk. The Ruggedized Advanced Pathogen Identification Device (RAPID) was employed to detect spores in raw milk down to a concentration of 2,500 spores per ml. Commercially available primers and probes developed to detect either the protective antigen gene or the lethal factor gene both provided easily read positive signals with the RAPID following extraction from milk with a commercially available DNA extraction kit. Nucleotide sequence analysis of the vrrA gene with the use of DNA extracted from spiked milk provided molecular data that readily identified the spores as B. anthracis with a 100% BLAST match to the Sterne and Ames strains and easily distinguished them from B. cereus. Physical-fate and thermal-stability studies demonstrated that spores and vegetative cells have a strong affinity for the cream fraction of whole milk. A single treatment at standard pasteurization temperatures, while 100% lethal to vegetative cells, had no effect on spore viability even 14 days after the treatment. Twenty-four hours after the first treatment, a second treatment at 72°C for 15 s reduced the viability of the population by ca. 99% but still did not kill all of the spores. From these studies, we conclude that standard pasteurization techniques for milk would have little effect on the viability of B. anthracis spores and that raw or pasteurized milk poses no obstacles to the rapid detection of the spores by molecular techniques.


2010 ◽  
Vol 88 (5) ◽  
pp. 197-200 ◽  
Author(s):  
G Reppas ◽  
P Nosworthy ◽  
T Hansen ◽  
M Govendir ◽  
R Malik

2018 ◽  
Vol 5 (8) ◽  
pp. 171539 ◽  
Author(s):  
Fumio Kasai ◽  
Patricia C. M. O'Brien ◽  
Jorge C. Pereira ◽  
Malcolm A. Ferguson-Smith

Extensive chromosome homologies revealed by cross-species chromosome painting between marsupials have suggested a high level of genome conservation during evolution. Surprisingly, it has been reported that marsupial genome sizes vary by more than 1.2 Gb between species. We have shown previously that individual chromosome sizes and GC content can be measured in flow karyotypes, and have applied this method to compare four marsupial species. Chromosome sizes and GC content were calculated for the grey short-tailed opossum (2 n = 18), tammar wallaby (2 n = 16), Tasmanian devil (2 n = 14) and fat-tailed dunnart (2 n = 14), resulting in genome sizes of 3.41, 3.31, 3.17 and 3.25 Gb, respectively. The findings under the same conditions allow a comparison between the four species, indicating that the genomes of these four species are 1–8% larger than human. We show that marsupial genomes are characterized by a low GC content invariable between autosomes and distinct from the higher GC content of the marsupial × chromosome.


2003 ◽  
Vol 25 (2) ◽  
pp. 121 ◽  
Author(s):  
NA Irlbeck ◽  
ID Hume

Many of the 600 species of Acacia found in Australia form part of the diet of several groups of marsupials. Acacia foliage is generally high in tannins but is consumed by several folivorous possums and by some macropods (kangaroos and wallabies), but the macropods eat it mainly as dry leaf litter during times of food shortage (in dry seasons and drought). Acacia gum is an important diet component of two omnivorous possums (Petaurus breviceps, Gymnobelidius leadbeateri) and, to a lesser extent, two rat-kangaroos (Bettongia sp.). Acacia seeds are consumed by marsupials to a limited extent, but are an important seasonal component of the diet of the mountain brushtail possum (Trichosurus cunninghami), and possibly the tammar wallaby (Macropus eugenii) on Kangaroo Island. Likewise, Acacia arils (lipid-rich appendages to the seeds of some species) are an important seasonal component of the diet of the mahogany glider (Petaurus gracilis). Acacia pollen and nectar are consumed by several omnivorous possums (e.g., Petaurus norfolcensis) as well as by at least one species of rock-wallaby (Petrogale sp.), but the quantitative contributions made by these floral products to the protein and energy budgets of the consumers have been difficult to determine. Thus several parts of the Acacia plant are food resources for one or more groups of marsupials, but the contribution of the genus to marsupial nutrition is often overlooked.


Sign in / Sign up

Export Citation Format

Share Document