Soil water extraction by dryland crops, annual pastures, and lucerne in south-eastern Australia

2001 ◽  
Vol 52 (2) ◽  
pp. 183 ◽  
Author(s):  
J. F. Angus ◽  
R. R. Gault ◽  
M. B. Peoples ◽  
M. Stapper ◽  
A. F. van Herwaarden

The extraction of soil water by dryland crops and pastures in south-eastern Australia was examined in 3 studies. The first was a review of 13 published measurements of soil water-use under wheat at several locations in southern New South Wales. Of these, 8 showed significantly more water extracted by crops managed with increased nitrogen supply or growing after a break crop. The mean additional soil water extraction in response to break crops was 31 mm and to additional N was 11 mm. The second study used the SIMTAG model to simulate growth and water-use by wheat in relation to crop management at Wagga Wagga. The model was set up to simulate crops that produced either average district yields or the potential yields achievable with good management. When simulated over 50 years of weather data, the combined water loss as drainage and runoff was predicted to be 67 mm/year for poorly managed crops and 37 mm for well-managed crops. Water outflow was concentrated in 70% of years for the poorly managed crops and 56% for the well-managed crops. In those years the mean losses were estimated to be 95 mm and 66 mm, respectively. The third study reports soil water measured twice each year during a phased pasture–crop sequence over 6.5 years at Junee. Mean water content of the top 2.0 m of soil under a lucerne pasture averaged 211 mm less than under a subterranean clover-based annual pasture and 101 mm less than under well-managed crops. Collectively, these results suggest that lucerne pastures and improved crop management can result in greater use of rainfall than the previous farming systems based on annual pastures, fallows, and poorly managed crops. The tactical use of lucerne-based pastures in sequence with well-managed crops can help the dewatering of the soil andreduce or eliminate the risk of groundwater recharge.

2013 ◽  
Vol 40 (4) ◽  
pp. 379 ◽  
Author(s):  
Yi Zhou ◽  
Christopher J. Lambrides ◽  
Matthew B. Roche ◽  
Alan Duff ◽  
Shu Fukai

The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C4 grass. Four wild Australian ecotypes (1–1, 25a1, 40–1, and 81–1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30–190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40–1 and 25a1) maintained more green cover (55–85% vs 5–10%) during water deficit and extracted more soil water (120–160 mm vs 77–107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.


2012 ◽  
Vol 39 (12) ◽  
pp. 999
Author(s):  
Ando M. Radanielson ◽  
Jeremie Lecoeur ◽  
Angelique Christophe ◽  
Lydie Guilioni

In conditions of water deficit, plant yield depends mostly on the ability of the plant to explore soil profile and its water uptake capacity per unit volume of soil. In this study, the value of soil water extraction properties for use in sunflower breeding was evaluated. Five experiments were carried out in pots, in greenhouses, from 2005 to 2009, in Montpellier, France. Elite sunflower cultivars and experimental hybrids obtained from a factorial cross between five female and five male inbred lines were grown. The soil water extraction performance of the plants was characterised by the soil water content at minimal stomatal conductance (SWCgs = 0) and the index of water extraction (IEgen), which was calculated as the relative value of SWCgs = 0 to the performance of the cultivar NKMelody. Heritability (H2) was estimated for the experimental hybrids. Phenotypic variability of the SWCgs = 0 was observed with a significant effect of the environment and the genotype. The latest released cultivars were observed as the best performing one in water extraction with an IEgen under 0.85. This trait was found to be suitable for use in comparisons of the soil water extraction performances of different genotypes. The high H2 value for SWCgs = 0 (0.77 and 0.81) and the significant correlation (r2 = 0.70, P < 0.001) between the values obtained for the experimental hybrids and the mean values of the general combining ability (GCA) for the parental lines showed that this trait is heritable and could be used in plant breeding programs. Phenotyping methods and the usefulness of this trait in crop modelling are discussed.


2003 ◽  
Vol 54 (8) ◽  
pp. 751 ◽  
Author(s):  
Murray Unkovich ◽  
Kerrin Blott ◽  
Alex Knight ◽  
Ivan Mock ◽  
Abdur Rab ◽  
...  

Annual crops were grown in alleys between belts of perennial shrubs or trees over 3–4 years at 3 sites across low rainfall (<450 mm) south-eastern Australia. At the two lower rainfall sites (Pallamana and Walpeup), crop grain yields within 2–5 m of shrub belts declined significantly with time, with a reduction equivalent to 45% over 9 m in the final year of cropping. At the third, wetter site (Bridgewater), the reduction in crop grain yields adjacent to tree belts was not significant until the final year of the study (12% over 11 m) when the tree growth rates had increased. The reductions in crop yield were associated with increased competition for water between the shrub or tree belts and the crops once the soil profile immediately below the perennials had dried. At all 3 sites during the establishment year, estimates of water use under the woody perennials were less than under annual crops, but after this, trends in estimates of water use of alley farming systems varied between sites. At Pallamana the perennial shrubs used a large amount of stored soil water in the second summer after establishment, and subsequently were predominantly dependent on rainfall plus what they could scavenge from beneath the adjacent crop. After the establishment year at the Walpeup site, water use under the perennial shrubs was initially 67 mm greater than under the annual crop, declining to be only 24 mm greater in the final year. Under the trees at Bridgewater, water use consistently increased to be 243 mm greater than under the adjacent annual crop by the final year. Although the shrub belts used more water than adjacent crop systems at Walpeup and Pallamana, this was mostly due to the use of stored soil water, and since the belts occupied only 7–18% of the land area, increases in total water use of these alley farming systems compared with conventional crop monocultures were quite small, and in terms of the extent of recharge control this was less than the area of crop yield loss. At the wetter, Bridgewater site, alley farming appeared to be using an increasing amount of water compared with conventional annual cropping systems. Overall, the data support previous work that indicates that in lower rainfall environments (<350 mm), alley farming is likely to be dogged by competition for water between crops and perennials.


1994 ◽  
Vol 74 (3) ◽  
pp. 411-420 ◽  
Author(s):  
Sylvia Borstlap ◽  
Martin H. Entz

Field trials were conducted over 4 site-years in southern Manitoba to compare the response of Katepwa wheat, Westar canola and Victoria field pea to zero tillage (ZT). The experimental design was a split plot with tillage system as the mainplot (ZT vs. conventional tillage (CT)) and crop species as the subplot. All crops received protection from insect, weed and disease pests. Tillage system had only a limited impact on crop dry matter accumulation or grain quality. Where differences were observed, crop performance was enhanced under ZT. Seasonal evapotranspiration (ET) was either reduced or unaffected by ZT, while ET efficiency (ETE: kg ha−1 mm−1 ET) was either increased or unchanged by the shift from CT to ZT. Higher ETE under ZT was attributed to less soil water evaporation. Significant tillage system × crop species (T × S) interactions for growth parameters, ET and ETE indicated that field pea often benefitted more than wheat or canola from ZT. A significant T × S interaction at one of the four sites indicated that water extraction between 30 and 90 cm was higher for pea and canola in the ZT compared with CT treatment, while soil water extraction by wheat was reduced under ZT. At a second site, lower ET for all three crops under ZT was attributed to reduced water use between 90 and 130 cm. Despite some effects of ZT on crop growth and water use, no significant tillage, T × S, or site × tillage interactions were observed for grain yield. It was concluded that under the conditions of this study (i.e. precipitation and temperature conditions close to the long-term average), Westar canola, Victoria field pea and Katepwa wheat were, for the most part, equally suited to ZT production. Key words: Soil water extraction, evapotranspiration efficiency, crop quality, grain yield, canopy development


2012 ◽  
pp. 233-240 ◽  
Author(s):  
R.G. Benyon ◽  
P.N.J. Lane ◽  
S. Theiveyanathan ◽  
T.M. Doody ◽  
P.J. Mitchell

1989 ◽  
Vol 29 (1) ◽  
pp. 43 ◽  
Author(s):  
WA Cowling ◽  
PM Wood

Resistance to Phomopsis stem and pod blight, caused by Phomopsis leptostromiformis (Knhn) Bubak, in narrow-leafed lupin (Lupinus angustifolius L.) was consistently expressed at 5 sites in the southwest of Western Australia and 5 sites in south-eastern Australia in 1984. There was a high correlation (r = 0.95, P< 0.001) of mean Phomopsis stem ratings on the 8 breeding lines and 2 cultivars between the 2 regions of southern Australia. The mean frequency of seed infection by P. leptostromiformis in 6 resistant lines in Western Australia ranged from 0.1 to 1.0% compared with 1.4% in 75A65-5 (a line with intermediate resistance) and 2.0% in Yandee and Chittick (susceptible cultivars). In south-eastern Australia, mean seed infection in 6 resistant lines ranged from 0.0-0.6% compared with 2.3% in 75A65-5, 1.6% in Yandee, and 1.1% in Chittick. There was also a correlation (r = 0.73, P < 0.05) of mean seed infection levels in the 8 lines and 2 cultivars between the regions. Pod blight occurred at significantly lower frequency in resistant lines than in susceptible cultivars at 3 sites in Western Australia where pod lesions were visible. Correlations among Phomopsis stem ratings, pod blight severity, and the frequency of seed infection among lines and cultivars were significantly positive in all comparisons at individual sites and when averaged across the 2 regions of southern Australia.


Sign in / Sign up

Export Citation Format

Share Document