Resistance to Phomopsis stem and pod blight of narrow-leafed lupin in a range of environments and its association with reduced Phomopsis seed infection.

1989 ◽  
Vol 29 (1) ◽  
pp. 43 ◽  
Author(s):  
WA Cowling ◽  
PM Wood

Resistance to Phomopsis stem and pod blight, caused by Phomopsis leptostromiformis (Knhn) Bubak, in narrow-leafed lupin (Lupinus angustifolius L.) was consistently expressed at 5 sites in the southwest of Western Australia and 5 sites in south-eastern Australia in 1984. There was a high correlation (r = 0.95, P< 0.001) of mean Phomopsis stem ratings on the 8 breeding lines and 2 cultivars between the 2 regions of southern Australia. The mean frequency of seed infection by P. leptostromiformis in 6 resistant lines in Western Australia ranged from 0.1 to 1.0% compared with 1.4% in 75A65-5 (a line with intermediate resistance) and 2.0% in Yandee and Chittick (susceptible cultivars). In south-eastern Australia, mean seed infection in 6 resistant lines ranged from 0.0-0.6% compared with 2.3% in 75A65-5, 1.6% in Yandee, and 1.1% in Chittick. There was also a correlation (r = 0.73, P < 0.05) of mean seed infection levels in the 8 lines and 2 cultivars between the regions. Pod blight occurred at significantly lower frequency in resistant lines than in susceptible cultivars at 3 sites in Western Australia where pod lesions were visible. Correlations among Phomopsis stem ratings, pod blight severity, and the frequency of seed infection among lines and cultivars were significantly positive in all comparisons at individual sites and when averaged across the 2 regions of southern Australia.

Zootaxa ◽  
2007 ◽  
Vol 1645 (1) ◽  
pp. 57-61 ◽  
Author(s):  
LAURENCE A. MOUND ◽  
ALICE WELLS

Callococcithrips gen.n. is erected for the species Rhynchothrips fuscipennis Moulton that lives only among the protective waxy secretions of an eriococcid on Kunzea in south-eastern Australia. Larvae and adults of this thrips move rapidly amongst the sticky wax strands, and their maxillary stylets are unusually long and convoluted. Circumstantial evidence suggests that the thrips is predatory on immature stages of the eriococcid. Also transferred to this genus is Liothrips atratus Moulton, based on a single female from Western Australia.


2009 ◽  
Vol 49 (10) ◽  
pp. 759 ◽  
Author(s):  
Andrew D. Moore

Dual-purpose cereals are employed in the high-rainfall zone of southern Australia to provide additional winter forage. Recently there has been interest in applying this technology in the drier environments of South and Western Australia. It would therefore be useful to gain an understanding of the trade-offs and risks associated with grazing wheat crops in different locations. In this study the APSIM (Agricultural Production Systems Simulator) crop and soil simulation models were linked to the GRAZPLAN pasture and livestock models and used to examine the benefits and costs of grazing cereal crops at 21 locations spanning seven of the regions participating in the Grain & Graze research, development and extension program. A self-contained part of a mixed farm (an annual pasture–wheat rotation plus permanent pastures) supporting a breeding ewe enterprise was simulated. At each location the consequences were examined of: (i) replacing a spring wheat cultivar with a dual-purpose cultivar (cv. Wedgetail or Tennant) in 1 year of the rotation; and (ii) either grazing that crop in winter, or leaving it ungrazed. The frequency of early sowing opportunities enabling the use of a dual-purpose cultivar was high. When left ungrazed the dual-purpose cultivars yielded less grain on average (by 0.1–0.9 t/ha) than spring cultivars in Western Australia and the Eyre Peninsula but more (by 0.25–0.8 t/ha) in south-eastern Australia. Stocking rate and hence animal production per ha could be increased proportionately more when a dual-purpose cultivar was used for grazing; because of the adjustments to stocking rates, grazing of the wheat had little effect on lamb sale weights. Across locations, the relative reduction in wheat yield caused by grazing the wheats was proportional to the grazing pressure upon them. Any economic advantage of moving to a dual-purpose system is likely to arise mainly from the benefit to livestock production in Western Australia, but primarily from grain production in south-eastern Australia (including the Mallee region). Between years, the relationship between increased livestock production and decreased grain yield from grazing crops shifts widely; it may therefore be possible to identify flexible grazing rules that optimise this trade-off.


1993 ◽  
Vol 7 (6) ◽  
pp. 1473 ◽  
Author(s):  
RV Southcott

Larval Leptus (Acarina : Erythraeidae) ectoparasitic on higher insects (Neuroptera. Coleoptera. Lepidoptera. Hymenoptera) are comprehensively reviewed (Diptera were considered previously) . The new species (all from Australia) comprise: L. spinalatus (from Neuroptera); L. belicolus. L. cerambycius. L. faini. L. halli. L. heleus. L. jenseni. L. orthrius. L. tarranus. L. titinius. L. truncatus. L. utheri (all from Coleoptera); L. agrotis, L. georgeae (from Lepidoptera); and L. monteithi (from Hymenoptera). A key is given to the larvae of Leptus from Australia and New Guinea . L. agrotis is an ectoparasite of Agrotis infusa (Boisduval), the bogong moth, whose larvae are an important pasture pest in south-eastern Australia; as well as the larva, the deutonymph and adult are described. Leptus boggohoranus Haitlinger is recorded from a further New Guinea species of Coleoptera. L. charon Southcott, originally described from an Australian dipteran, is recorded as ectoparasitic on an Australian larval lepidopteran (Anthela sp., Anthelidae), as well as from adult Lepidoptera and Coleoptera. Leptus trucidatus (Hull, 1923), comb. nov., is proposed for Achorolophus trucidatus Hull, 1923, an adult from Western Australia.


2012 ◽  
Vol 25 (1) ◽  
pp. 49 ◽  
Author(s):  
Robert Gibson ◽  
Barry J. Conn ◽  
Jeremy J. Bruhl

A phenetic study of morphological characters of the Drosera peltata complex (Droseraceae) supports the recognition of the following taxa: D. peltata from wetlands of south-eastern Australia; D. auriculata from south-eastern Australia and New Zealand; the morphologically variable D. hookeri from south-eastern Australia and northern New Zealand; the widespread D. lunata from southern and South-East Asia, as well as northern and north-eastern Australia; and the new species D. yilgarnensis R.P.Gibson & B.J.Conn is here described, from around granite outcrops of south-western Australia. D. bicolor from south-western Australia is recognised as a distinct species outside of the D. peltata complex. D. insolita, considered until recently as a distinct species, is reduced to synonymy of D. lunata. Phenotypic plasticity, vegetative similarity and fleetingly produced diagnostic floral and seed characters within the complex pose significant challenges in understanding the taxonomy of these taxa.


2009 ◽  
Vol 22 (4) ◽  
pp. 296 ◽  
Author(s):  
A. S. Harvey ◽  
Wm J. Woelkerling ◽  
A. J. K. Millar

The genus Lithophyllum (Lithophylloideae, Corallinaceae, Rhodophyta) is represented by six species in south-eastern Australia L. chamberlainianum Woelkerling & Campbell, L. corallinae (Crouan & Crouan) Heydrich, L. cuneatum Keats, L. pustulatum (Lamouroux) Foslie, L. riosmenae, sp. nov., and L. stictaeforme (Areschoug in Agardh) Hauck. Four of these taxa are commonly found in Australia, whereas L. cuneatum was previously known only from Fiji and L. riosmenae is newly described. Morphological and anatomical accounts are provided, including keys, information on distribution, nomenclature and habitat in south-eastern Australia. South-eastern Australian species are primarily delimited on characters relating to tetrasporangial conceptacles and the presence/absence of a semi-endophytic habit. Ten species of Lithophyllum are now confirmed to occur in Australia and their diagnostic characters are detailed. Confirmed Australian species of Lithophyllum are primarily delimited on characters relating to tetrasporangial conceptacles, the presence/absence of a semi-endophytic habit and the growth-form. Biogeographic comparisons between south-eastern Australia and other Australian biogeographic regions are also made. Eight species of Lithophyllum are known to occur in southern Australia, three in tropical eastern Australia and three in subtropical western Australia. Southern and south-eastern Australia show major overlap, with five species occurring in both regions. L. pustulatum and L. stictaeformae are widely distributed, having been confirmed to occur in eastern tropical, western subtropical, warm temperate and cold temperate waters within Australia.


1982 ◽  
Vol 33 (5) ◽  
pp. 917 ◽  
Author(s):  
BJ Richardson

Eight polymorphic loci were detected in a survey for electrophoretically detectable protein variation, carried out using liver samples from the Australian jack mackerel, T. declivis. The distribution of gene and genotype frequencies in sample sets from different areas shows that distinct subpopulations of the species occur in Western Australia and in New Zealand and that two or more geographically overlapping but genetically distinct subpopulations occur in the waters around south-eastern Australia.


1989 ◽  
Vol 16 (2) ◽  
pp. 131 ◽  
Author(s):  
DR King ◽  
DR King ◽  
LE Twigg ◽  
LE Twigg ◽  
JL Gardner ◽  
...  

The tolerances to sodium fluoroacetate (1080) were estimated for Dasyurus geoffroii (LD*50, ca. 7.5 mg 1080 kg-1), D. hallucatus (ca. 7.5 mg kg-1), Antechinus flavipes (ca. 11.0 mg kg-1) and Phascogale calura (ca. 17.5 mg kg-1) from Western Australia and comparisons were made with D. viverrinus (ca. 1.5 mg kg-1) and A. flavipes (ca. 3.5 mg kg-1) from south-eastern Australia. The species from Western Australia have had evolutionary exposure to naturally occurring fluoroacetate and were more tolerant to the toxin than dasyurids from south-eastern Australia, Presumably, they have acquired this tolerance through feeding on prey which had fed on plants containing fluoroacetate.


2008 ◽  
Vol 22 (2) ◽  
pp. 301 ◽  
Author(s):  
George D. F. Wilson

Phreatoicidea Stebbing, 1893 live in freshwaters of Gondwana: Australia, South Africa, India and New Zealand. Many of these isopods have a subterranean lifestyle. Parsimony analysis of morphological data of generic exemplars and a Triassic fossil was used to explore the timing of this habitat adaption. The monophyly of the Hypsimetopidae Nicholls, 1943, including blind taxa Hyperoedesipus Nicholls & Milner, 1923 (Western Australia), Nichollsia Chopra and Tiwari, 1950 (Ganges Plain, India) and Phreatoicoides Sayce, 1900 (Tasmania and Victoria) was strongly supported. Crenisopus Wilson and Keable, 1999 (Kimberleys, Western Australia) and the PonderellidaeWilson & Keable, 2004 (Queensland mound springs) may be sister to hypsimetopids. Blind Phreatoicidae found only in south-eastern Australia and in New Zealand were also monophyletic. The hypogean habitat, blindness, fossil and plate tectonic evidence were mapped on the cladogram to estimate timing of this adaptation. A subterranean adaptation before 130 million years ago was supported for hypsimetopids. Phreatoicus Chilton, 1891 and Neophreatoicus Nicholls, 1944 (hypogean in New Zealand) were in a monophyletic clade with epigean Phreatoicidae, Crenoicus Nicholls, 1944 (south-eastern Australia) and Notamphisopus Nicholls, 1943 (New Zealand). Blindness in epigean taxa is consistent with recolonisation of surface waters from underground refuges. Because Crenoicus is sister-group to the New Zealand clade, and because overseas dispersal between Australia and New Zealand is unlikely, the minimum age for these blind phreatoicids is ~80 million years. This evidence is consistent with a subterranean freshwater fauna surviving the presumed Oligocene inundation of New Zealand.


2001 ◽  
Vol 41 (3) ◽  
pp. 347 ◽  
Author(s):  
J. Evans ◽  
A. M. McNeill ◽  
M. J. Unkovich ◽  
N. A. Fettell ◽  
D. P. Heenan

The removal of nitrogen (N) in grain cereal and canola crops in Australia exceeds 0.3 million t N/year and is increasing with improvements in average crop yields. Although N fertiliser applications to cereals are also rising, N2-fixing legumes still play a pivotal role through inputs of biologically fixed N in crop and pasture systems. This review collates Australian data on the effects of grain legume N2 fixation, the net N balance of legume cropping, summarises trends in the soil N balance in grain legume–cereal rotations, and evaluates the direct contribution of grain legume stubble and root N to wheat production in southern Australia. The net effect of grain legume N2 fixation on the soil N balance, i.e. the difference between fixed N and N harvested in legume grain (Nadd) ranges widely, viz. lupin –29–247 kg N/ha (mean 80), pea –46–181 kg N/ha (mean 40), chickpea –67–102 kg N/ha (mean 6), and faba bean 8–271 kg N/ha (mean 113). Nadd is found to be related to the amount (Nfix) and proportion (Pfix) of crop N derived from N2 fixation, but not to legume grain yield (GY). When Nfix exceeded 30 (lupin), 39 (pea) and 49 (chickpea) kg N/ha the N balance was frequently positive, averaging 0.60 kg N/kg of N fixed. Since Nfix increased with shoot dry matter (SDM) (21 kg N fixed/t SDM; pea and lupin) and Pfix (pea, lupin and chickpea), increases in SDM and Pfix usually increased the legume’s effect on soil N balance. Additive effects of SDM, Pfix and GY explained most (R2 = 0.87) of the variation in Nadd. Using crop-specific models based on these parameters the average effects of grain legumes on soil N balance across Australia were estimated to be 88 (lupin), 44 (pea) and 18 (chickpea) kg N/ha. Values of Nadd for the combined legumes were 47 kg N/ha in south-eastern Australia and 90 kg N/ha in south-western Australia. The average net N input from lupin crops was estimated to increase from 61 to 79 kg N/ha as annual rainfall rose from 445 to 627 mm across 3 shires in the south-east. The comparative average input from pea was 37 to 47 kg N/ha with least input in the higher rainfall shires. When the effects of legumes on soil N balance in south-eastern Australia were compared with average amounts of N removed in wheat grain, pea–wheat (1:1) sequences were considered less sustainable for N than lupin–wheat (1:1) sequences, while in south-western Australia the latter were considered sustainable. Nitrogen mineralised from lupin residues was estimated to contribute 40% of the N in the average grain yield of a following wheat crop, and that from pea residues, 15–30%; respectively, about 25 and 15 kg N/ha. Therefore, it was concluded that the majority of wheat N must be obtained from pre-existing soil sources. As the amounts above represented only 25–35% of the total N added to soil by grain legumes, the residual amount of N in legume residues is likely to be important in sustaining those pre-existing soil sources of N.


2001 ◽  
Vol 52 (2) ◽  
pp. 183 ◽  
Author(s):  
J. F. Angus ◽  
R. R. Gault ◽  
M. B. Peoples ◽  
M. Stapper ◽  
A. F. van Herwaarden

The extraction of soil water by dryland crops and pastures in south-eastern Australia was examined in 3 studies. The first was a review of 13 published measurements of soil water-use under wheat at several locations in southern New South Wales. Of these, 8 showed significantly more water extracted by crops managed with increased nitrogen supply or growing after a break crop. The mean additional soil water extraction in response to break crops was 31 mm and to additional N was 11 mm. The second study used the SIMTAG model to simulate growth and water-use by wheat in relation to crop management at Wagga Wagga. The model was set up to simulate crops that produced either average district yields or the potential yields achievable with good management. When simulated over 50 years of weather data, the combined water loss as drainage and runoff was predicted to be 67 mm/year for poorly managed crops and 37 mm for well-managed crops. Water outflow was concentrated in 70% of years for the poorly managed crops and 56% for the well-managed crops. In those years the mean losses were estimated to be 95 mm and 66 mm, respectively. The third study reports soil water measured twice each year during a phased pasture–crop sequence over 6.5 years at Junee. Mean water content of the top 2.0 m of soil under a lucerne pasture averaged 211 mm less than under a subterranean clover-based annual pasture and 101 mm less than under well-managed crops. Collectively, these results suggest that lucerne pastures and improved crop management can result in greater use of rainfall than the previous farming systems based on annual pastures, fallows, and poorly managed crops. The tactical use of lucerne-based pastures in sequence with well-managed crops can help the dewatering of the soil andreduce or eliminate the risk of groundwater recharge.


Sign in / Sign up

Export Citation Format

Share Document