scholarly journals Magnetic Field Surveys of Thin Sections

2018 ◽  
Vol 2018 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Nathan S. Church ◽  
Suzanne A. McEnroe
Geophysics ◽  
1982 ◽  
Vol 47 (1) ◽  
pp. 71-88 ◽  
Author(s):  
P. H. Nelson ◽  
W. H. Hansen ◽  
M. J. Sweeney

Three case studies investigating induced‐polarization (IP) responses of a zeolite‐bearing conglomerate and of two carbonaceous siltstones are presented. The IP response of these noneconomic geologic materials can either mask or mimic the response from sulfide mineralization which is sought by electrical field surveys. The nonsulfide rock types which produced unusually high responses on IP field surveys were sampled by core drilling for chemical, mineralogical, and electrical laboratory study. The electrical response of core samples was measured in a four‐electrode sample holder over the 0.03–1000 Hz range. Geologic description of the core, petrographic examination of thin sections, mineral identification by x‐ray diffraction (XRD), and chemical analysis of samples supplemented the electrical measurements. A surface phase response of 20 mrad was obtained from field surveys over the Gila conglomerate at an Arizona location. Core samples of the Gila were examined in thin section, and clast surfaces were found to be coated with a thin layer of zeolites. These zeolites project into pore spaces in the conglomerate, and thus are in intimate contact with formation waters. A series of laboratory experiments suggests that zeolites cause most of the observed IP response. Phase responses as high as 100 mrad were measured with field surveys over siltstone and limestone sequences in western Nevada. Samples recovered from the Luning and Gabbs‐Sunrise formations include siltstones containing small amounts of amorphous carbon. These siltstones are very conductive electrically, and the high‐phase response is attributed to polarization of the carbon‐pore water interface. Low porosity in these carbonaceous siltstones enhances the phase response.


Author(s):  
Jefferson F. D. F. Araujo ◽  
Angela A. P. Correa ◽  
Elder Yokoyama ◽  
Andre L. A. dos Reis ◽  
Vanderlei C. Oliveira Jr. ◽  
...  

Scanning magnetic microscopy is a new tool that has recently been used to map magnetic fields with good spatial resolution and field sensitivity. This technology has great advantages over other instruments; for example, its operation does not require cryogenic technology, which reduces its operational cost and complexity. Here, we describe the construction of a customizing scanning magnetic microscope based on commercial Hall-effect sensors at room temperature that achieves a spatial resolution of 200 µm. Two scanning stages on the x- and y-axes of precision, consisting of two coupled actuators, control the position of the sample, and this microscope can operate inside or outside a magnetic shield. We obtained magnetic field sensitivities better than 521 nTrms/√Hz between 1 and 10 Hz, which correspond to a magnetic momentum sensitivity of 9.20 × 10–10 Am2. In order to demonstrate the capability of the microscopy, polished thin sections of geological samples, samples containing microparticles and magnetic nanoparticles were measured. For the geological samples, a theoretical model was adapted from the magnetic maps obtained by the equipment. Vector field maps are valuable tools for the magnetic interpretation of samples with a high spatial variability of magnetization. These maps can provide comprehensive information regarding the spatial distribution of magnetic carriers. In addition, this model may be useful for characterizing isolated areas over samples or investigating the spatial magnetization distribution of bulk samples at the micro and millimeter scales. As an auxiliary technique, a magnetic sweep map was created using Raman spectroscopy; this map allowed the verification of different minerals in the samples. This equipment can be useful for many applications that require samples that need to be mapped without a magnetic field at room temperature, including rock magnetism, the nondestructive testing of steel materials and the testing of biological samples. The equipment can not only be used in cutting-edge research but also serve as a teaching tool to introduce undergraduate, master's and Ph.D. students to the measurement methods and processing techniques used in scanning magnetic microscopy.


2018 ◽  
Vol 2018 (1) ◽  
pp. 1-5
Author(s):  
Clive Foss ◽  
Keith Leslie ◽  
Najid Pereira-Ishak
Keyword(s):  

1967 ◽  
Vol 31 ◽  
pp. 381-383
Author(s):  
J. M. Greenberg

Van de Hulst (Paper 64, Table 1) has marked optical polarization as a questionable or marginal source of information concerning magnetic field strengths. Rather than arguing about this–I should rate this method asq+-, or quarrelling about the term ‘model-sensitive results’, I wish to stress the historical point that as recently as two years ago there were still some who questioned that optical polarization was definitely due to magnetically-oriented interstellar particles.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1967 ◽  
Vol 31 ◽  
pp. 355-356
Author(s):  
R. D. Davies

Observations at various frequencies between 136 and 1400 MHz indicate a considerable amount of structure in the galactic disk. This result appears consistent both with measured polarization percentages and with considerations of the strength of the galactic magnetic field.


Sign in / Sign up

Export Citation Format

Share Document