scholarly journals Combined gravity and magnetic studies of satellite bodies associated with the giant Coompana negative magnetic anomaly in South Australia

2018 ◽  
Vol 2018 (1) ◽  
pp. 1-8
Author(s):  
Clive Foss ◽  
Philip Heath ◽  
Tom Wise ◽  
Rian Dutch
2009 ◽  
Vol 51 (1) ◽  
Author(s):  
F. Cella ◽  
M. Fedi ◽  
G. Florio ◽  
V. Paoletti ◽  
A. Rapolla

2013 ◽  
Author(s):  
Jude King ◽  
C. M. Green ◽  
J. D. Fairhead ◽  
A. Salem ◽  
P. J. East

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. G41-G54 ◽  
Author(s):  
Shikun Dai ◽  
Dongdong Zhao ◽  
Shunguo Wang ◽  
Bin Xiong ◽  
Qianjiang Zhang ◽  
...  

Fast and accurate numerical modeling of gravity and magnetic anomalies is the basis of field-data inversion and quantitative interpretation. In gravity and magnetic prospecting, the computation and memory requirements of practical modeling is still a significant issue, which leads to the difficulty of using efficient and detailed inversions for large-scale complex models. A new 3D numerical modeling method for gravity and magnetic anomaly in a mixed space-wavenumber domain is proposed to mitigate the difficulties. By performing a 2D Fourier transform along two horizontal directions, 3D partial differential equations governing gravity and magnetic potentials in the spatial domain are transformed into a group of independent 1D differential equations wrapped with different wavenumbers. Importantly, the computation and memory requirements of modeling are greatly reduced by this method. A modeling example with 4,040,100 observations can be finished in approximately 28 s on a desktop using a single core, and the independent differential equations are highly parallel among different wavenumbers. The method preserves the vertical component in the space domain, and thus a mesh for modeling can be finer at a shallower depth and coarser at a deeper depth. In general, the new method takes into account the calculation accuracy and the efficiency. The finite-element algorithm combined with a chasing method is used to solve the transformed differential equations with different wavenumbers. In a synthetic test, a model with prism-shaped anomalies is used to verify the accuracy and efficiency of the proposed algorithm by comparing the analytical solution, our numerical solution, and a well-known numerical solution. Furthermore, we have studied the balance between computational accuracy and efficiency using a standard fast Fourier transform (FFT) method with grid expansion and the Gauss-FFT method. A model with topography is also used to explore the ability of modeling topography with our method. The results indicate that the proposed method using the Gauss-FFT method has characteristics of fast calculation speed and high accuracy.


Geophysics ◽  
1979 ◽  
Vol 44 (1) ◽  
pp. 102-107 ◽  
Author(s):  
S. K. Singh ◽  
R. Castro E. ◽  
M. Guzman S.

Closed form expressions for the gravity anomaly of a circular lamina and the gravity and magnetic anomalies due to a vertical right circular cylinder have been obtained previously (Singh, 1977a; Singh, 1977b; Singh and Sabina, 1978) by a method which avoids complicated integrations commonly used in deriving such solutions (e.g., Nabighian, 1962; Rao and Radhakrishnamurty, 1966). The method involves use of the Fourier‐Hankel transform of Poisson’s equation. The final expressions are obtained in closed form by employing certain tabulated integrals.


Geophysics ◽  
1948 ◽  
Vol 13 (3) ◽  
pp. 437-442 ◽  
Author(s):  
Laszlo Egyed

The equations are given for the gravitational gradient and curvature, and for the horizontal and vertical components of the magnetic anomaly for ore bodies of the Kursk type. It is then shown how from these equations the depth, width of crest, angle of dip, anomalous density and magnetic susceptibility of the body may be determined.


1981 ◽  
Vol 18 (4) ◽  
pp. 680-692 ◽  
Author(s):  
P. S. Kumarapeli ◽  
A. K. Goodacre ◽  
M. D. Thomas

Prominent, nearly coincident, positive gravity and magnetic anomalies occur in the Sutton Mountains region, centered about 100 km east of Montreal, Quebec. Several lines of evidence indicate that the gravity anomaly stems from two principal sources: a deep (mid and lower crustal) source of speculative origin and a shallow source identifiable with a narrow belt of late Precambrian – early Cambrian metavolcanic rocks, the Tibbit Hill volcanics. The magnetic anomaly seems to be produced mainly by the metavolcanic rocks. Three-dimensional modelling of a residual gravity anomaly, supplemented by two-dimensional modelling of the magnetic anomaly, shows that the seemingly minor belt of metavolcanic rocks constitutes the surface expression of a thick (maximum thickness ~8 km) pile of dominantly mafic volcanics, which are only slightly exposed at the present level of erosion.The Tibbit Hill volcanics are regarded as products of rift-related volcanism that occurred at an rrr triple junction developed during the early stages of the opening of the Iapetus Ocean. The Ottawa graben is probably the failed arm of this triple junction. The emplacement of the Grenville dike swarm whose trend is nearly coincident with that of the Ottawa graben was probably coeval with the volcanism in the Sutton Mountains region. The present work shows that the volcanism in the region was on a much larger scale than hitherto recognized.


Sign in / Sign up

Export Citation Format

Share Document