Polarography of nickel in concentrated chloride media

1966 ◽  
Vol 19 (8) ◽  
pp. 1343 ◽  
Author(s):  
TM Florence

In concentrated chloride media, nickel is reduced at far more positive potentials than in dilute solutions. The positive shift in half-wave potential increases as the ionic strength is raised, and is also greater when the cation of the supporting electrolyte has a high hydration number. Evidence is presented to show that the reduction in overpotential is due to the formation of a nickel chloride complex, [Ni(H2O)5Cl]+, which has a stoicheiometric stability constant of 0.094 � 0.009 at an ionic strength of 10.0. Spectrophotometric results show that this nickel species is not formed in low ionic strength solutions. In anhydrous methanol saturated with lithium chloride, nickel is present as the tetrachloro complex, [NiCl,]2-, which has similar polarographic behaviour to the monochloro complex. Current-potential curves recorded at a rotated pyrolytic graphite electrode enabled the behaviour of nickel to be studied in the absence of specific adsorption of the chloride ion. Nickel is reduced at more positive potentials at a dropping mercury electrode than at the pyrolytic graphite electrode, and the results indicate that this difference is due to specific adsorption of chloride on the mercury electrode.

2000 ◽  
Vol 65 (3) ◽  
pp. 326-342
Author(s):  
María S. Crespo-Pinilla ◽  
Fernando Mata-Pérez ◽  
Rosa M. Villamañán

A study of two prewaves of the Ni(II)-SCN- system was carried out under the experimental conditions when the influence of electroreduction of SCN- is negligible. Kinetics of Ni(II) reduction in thiocyanate media on the dropping mercury electrode was studied by DC Tast Polarography (DCTP) via determination of Koutecký's parameter χ; the influence of different variables was analyzed. The study of prewaves was performed using various polarographic techniques. Values of χ depend on the SCN- concentration, pH, ionic strength (Ψ-effect) and on the nature of the supporting electrolyte. The number of electrons n, the transfer coefficient α, the stoichiometric number ν, ∆H≠, and ∆S≠ were determined (compensation effect). The first prewave has character of a reaction in the solution, the second prewave is a surface process. Main features of both mechanisms are common: catalytic nature, one-electron step discharge and the rate-determining process between species of opposite charges.


2007 ◽  
Vol 23 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Roohollah Torabi KACHOOSANGI ◽  
Craig E. BANKS ◽  
Xiaobo JI ◽  
Richard G. COMPTON

RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 1722-1728 ◽  
Author(s):  
Pankaj Gupta ◽  
Munetaka Oyama ◽  
Rajendra N. Goyal

Electrochemical oxidation of 8-hydroxydeoxyguanosine (8-OHdG) and its detection with low detection limit is reported at pyrolytic graphite electrode.


Sign in / Sign up

Export Citation Format

Share Document