supporting electrolyte
Recently Published Documents


TOTAL DOCUMENTS

925
(FIVE YEARS 188)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
Trevor Michael Braun ◽  
Jimmy John ◽  
Nagarajan Jayaraju ◽  
Daniel Josell ◽  
Thomas P. Moffat

Abstract Robust, void-free Cu electrodeposition in high-aspect ratio features relies on careful tuning of electrolyte additives, concentrations, and electrochemical parameters for a given feature dimension or wafer pattern. Typically, Cu electrodeposition in electronics manufacturing of microscale or larger features (i.e., microvias, through-holes, and high-density interconnects) employs a CuSO4 – H2SO4 electrolyte containing millimolar levels of chloride and, at a minimum, micromolar levels of a polyether suppressor. Research and optimization efforts have largely focused on the relationship between electrolyte additives and growth morphology, with less attention given to the impact of supporting electrolyte. Accordingly, a computational study exploring the influence of supporting electrolyte on Cu electrodeposition in microvias is presented herein. The model builds upon prior experimental and computational research on localized Cu deposition by incorporating the full charge conservation equation with electroneutrality to describe potential variation in the presence of ionic gradients. In accord with experimental observations, simulations predict enhanced current localization to the microvia bottom as H2SO4 concentration is decreased. This phenomenon derives from enhanced electromigration within recessed features that accompanies the decrease of conductivity with local metal ion depletion. This beneficial aspect of low acid electrolytes is also impacted by feature density, CuSO4 concentration, and the extent of convection.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Yeney Lauzurique ◽  
Lidia Carolina Espinoza ◽  
César Huiliñir ◽  
Verónica García ◽  
Ricardo Salazar

Winery wastewater represents the largest waste stream in the wine industry. This deals with the mineralization of the organic matter present in winery wastewater using anodic oxidation and two types of anodes—namely, a boron-doped diamond electrode (BDD) and two mixed metal oxides (MMO), one with the nominal composition Ti/Ru0.3Ti0.7O2 and the other with Ti/Ir0.45Ta0.55O2. To conduct the study, the variability of different quality parameters for winery wastewater from the Chilean industry was measured during eight months. A composite sample was treated using anodic oxidation without the addition of supporting electrolyte, and the experiments were conducted at the natural pH of the industrial wastewater. The results show that this effluent has a high content of organic matter (up to 3025 ± 19 mg/L of total organic carbon (TOC)), which depends on the time of the year and the level of wine production. With MMO electrodes, TOC decreased by 2.52% on average after 540 min, which may be attributed to the presence of intermediate species that could not be mineralized. However, when using a BDD electrode, 85% mineralization was achieved due to the higher generation of hydroxyl radicals. The electrolyzed sample contained oxamic, acetic, and propionic acid as well as different ions such as sulfate, chloride, nitrate, and phosphate. These ions can contribute to the formation of different species such as active species of chlorine, persulfate, and perphosphate, which can improve the oxidative power of the system.


Author(s):  
Hugo Alejandro Nájera-Aguilar ◽  
Rosario Mayorga-Santis ◽  
Rubén Fernando Gutiérrez-Hernández ◽  
Antonio Santiesteban-Hernández ◽  
Francisco Rodríguez-Valadez ◽  
...  

Abstract Pharmaceutical substances such as propranolol (PRO) are an emerging class of aquatic contaminants that have increasingly been detected in ground and surface water. For this reason, the aim of this study was to evaluate the efficiency of advanced oxidation systems for the PRO degradation. The tests started with anodic oxidation (AO), using 0.01, 0.05, and 0.1 M Na2SO4 as the supporting electrolyte and 16, 32, 48, and 64 mA cm−2 as current density. Under the best conditions obtained in AO, the electro-Fenton (EF) process was reviewed, where the effect of Fe2+ was analyzed with 5, 10, 15, and 20 mg Fe2+ L−1. The Fenton reaction (FR) was studied using the Fe2+ concentration that promoted the highest percentage of PRO removal and initial concentration of 16 mg L−1 of H2O2, in addition to these conditions, in the photo-Fenton (PF) system, the effect of UV light with wavelengths 254 and 365 nm were evaluated. The results obtained showed that the degradation efficiency of the EF > AO > PF > FR system along with a percent removal of 94.52, 90.4, 25.97, and 4.4%, respectively. The results showed that PRO can be removed through the studied systems, with the EF system being the most efficient.


2021 ◽  
Vol 22 (2) ◽  
pp. 273-279
Author(s):  
Saeed Ahmed Lakho ◽  
Mansoor Ahmed ◽  
Muhammad Waseem Akhtar ◽  
Madan Lal ◽  
Ubed-Ur-Rahman Mughal ◽  
...  

Metal oxide nanoparticles have found numerous applications in different fields. In this paper, the preparation of nickel oxide nanostructures is given. The nanostructures were synthesized by using the hydrothermal method. The characterization was done with X-ray diffraction (XRD) and scanning electron microscopy (SEM). The newly synthesized nanostructures were utilized as a modifier of the working electrode, i.e., glassy carbon electrode (GCE). The modified GCE exhibited an excellent response towards methotrexate (MTX) anticancer drug. The modified GCE, as compared to bare GCE, showed an increased response towards MTX. In this study, BrittonRobinson buffer (BRB) was selected as a supporting electrolyte having pH 5. By using electrochemical impedance spectroscopy (EIS), the method was found linear in the range of 5-40 µM with a limit of detection and quantification values of 2.4 µM and 7.28 µM, respectively. The method developed by this way was successfully applied for the analysis of MTX from injection formulations. The interference studies were also carried out to check the method's selectivity.


Author(s):  
Elin Marlina ◽  
Purwanto Purwanto ◽  
Sudarno Sudarno

In this study, decolorization of wastewater samples taken from the paper industry is investigated using electrochemical peroxidation process. The electrochemical peroxidation process is a part of electrochemical advanced oxidation processes, which is based on the Fenton’s chemical reaction, provided by addition of external H2O2 into reaction cell. In this study, iron is used as anode and graphite as cathode put at the fixed distance of 30 mm in a glass reaction cell. The cell was filled with the solution containing wastewater and sodium chloride as the supporting electrolyte. Factors of the process such as pH, current intensity, hydrogen peroxide concentration, and time of treatment were studied. The results illustrate that all these parameters affect efficiencies of dye removal and chemical oxygen demand (COD) reducing. The maximal removal of wastewater contaminants was achieved under acid (pH 3) condition, with the applied current of 1 A, and hydrogen peroxide concentration of 0.033 M. At these conditions, decolorization process efficiency reached 100 and 83 % of COD removal after 40 minutes of wastewater sample treatment. In addition, the electrical energy consumption for wastewater treatment by electrochemical peroxidation is calculated, showing increase as the current intensity of treatment process was increased. The obtained results suggest that electrochemical peroxidation process can be used for removing dye compounds and chemical oxygen demand (COD) from industrial wastewaters with high removal efficiency.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gülten Atun ◽  
Filiz Şahin ◽  
Elif Türker Acar ◽  
Sinem Ortaboy

Abstract Cobalt, nickel, and their mixed hydroxides were electrochemically deposited on polythiophene-coated carbon-cloth substrate to develop new pseudo-capacitive electrodes for energy storage devices. Thiophene was electro-polymerized on carbon-cloth by the potentiodynamic method in acetonitrile containing 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ionic-liquid as supporting electrolyte. The scanning-electron-microscopy images imply that flower-like Co(OH)2 microstructures deposited on bamboo-like polythiophene coatings on carbon-fibers but they are covered by net curtain like thin Ni(OH)2 layer. The Co-Ni layered-double-hydroxide deposited from their equimolar sulfate solutions is composed of large aggregates. The electron-dispersive-spectrum exhibits that Co/Ni ratio equals unity in the layered-double-hydroxide. The capacitances of Co, Ni, and Co-Ni hydroxide-coated PTh electrodes are 100, 569, and 221 F/g at 5 mA/cm2 in 1 M KOH solution, respectively. Their corresponding oxides obtained by calcination at 450 °C in de-aerated medium possess higher capacitance up to 911, 643, and 696 F/g at 2 A/cm2. The shape of cyclic-voltammetry and galvanostatic-charge-discharge curves, as well as the Nyquist plots derived from electrochemical-impedance-spectroscopy measurements, reveal that hydroxide coatings on the polythiophene-coated carbon-cloth are more promising electrode materials for supercapacitor applications. The mixed hydroxide-coated electrode shows good cyclic stability of 100% after 400 cycles at 5 mA/cm2.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7582
Author(s):  
Izabela Bargiel ◽  
Joanna Smajdor ◽  
Anna Górska ◽  
Beata Paczosa-Bator ◽  
Robert Piech

A new voltametric method for highly sensitive propranolol (PROP) determination was developed. A glassy carbon electrode modified with a hybrid material made of carbon black (CB) and Nafion was used as the working electrode. The preconcentration potential and time were optimized (550 mV and 15 s), as well as the supporting electrolyte (0.1 mol L−1 H2SO4). For 15 s preconcentration time, linearity was achieved in the range 0.5–3.5 μmol L−1 and for 120 s in 0.02–0.14 μmol L−1. Based on the conducted calibration (120 s preconcentration time) limit of detection (LOD) was calculated and was equal to 7 nmol L−1. To verify the usefulness of the developed method, propranolol determination was carried out in real samples (tablets and freeze-dried urine). Recoveries were calculated and were in the range 92–102%, suggesting that the method might be considered as accurate. The repeatability of the signal expressed as relative standard deviation (RSD) was equal to 1.5% (n = 9, PROP concentration 2.5 µmol L−1). The obtained results proved that the developed method for propranolol determination might be successfully applied in routine laboratory practice.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7087
Author(s):  
Clemente Bretti ◽  
Roberto Di Pietro ◽  
Paola Cardiano ◽  
Olivia Gomez-Laserna ◽  
Anna Irto ◽  
...  

The thermodynamics of the interaction of L-glutamic-N,N-diacetic acid (GLDA) with protons was studied potentiometrically at different temperatures, ionic strengths and ionic media. Four protonation constants and corresponding enthalpy changes occurred at infinite dilution together with temperature and ionic strength coefficients. The medium effect was also interpreted in terms of the formation of weak complexes between the ligand and the cations of supporting electrolytes, resulting in a greater tendency of GLDA to chemically interact with Na+ rather than K+ and, in turn, (CH3)4N+. Formation constants of GLDA with Cd2+ were determined in NaCl(aq) at different ionic strength values. Five complex species were found, namely CdL2−, CdHL−, CdH2L0(aq), Cd2L0(aq), and Cd(OH)L3−, whose formation constant values at infinite dilution were log β = 12.68, 17.61, 20.76, 17.52, and 1.77, respectively. All the species results were relevant in the pH range of natural waters, although the Cd2L0(aq) was observed only for CCd ≥ CGLDA and concentrations of >0.1 mmol dm−3. The sequestering ability of GLDA toward Cd2+, evaluated by means of pL0.5, was maximum at pH~10, whereas the presence of a chloride containing a supporting electrolyte exerted a negative effect. Among new generation biodegradable ligands, GLDA was the most efficient in Cd2+ sequestration.


Author(s):  
Silvana García ◽  
Noelia Zurita

Comparative analysis of copper nanoparticles (CuNPs) obtained by electrodeposition on highly oriented pyrolytic graphite (HOPG) substrates from different supporting electrolytes containing sulphate anions, was performed. Voltammetric results indicated that Cu electrodeposition follows a diffusion-controlled nucleation and crystal growth model for three solutions studied (Na2SO4, H2SO4 and Na2SO4+H2SO4). Na2SO4 solution was found to be most effective because the copper reduction occurs at most positive potential value, reaching the highest current density. Analysis of potentiostatic current transients revealed that the process can be described predominantly by a model involving 3D-progressive nucleation mechanism, which was corroborated by scanning electron microscopy (SEM) analysis. SEM images showed high density of hemispherical shaped Cu particles of different sizes (mostly between 80-150 nm), randomly distributed on the HOPG surface for Na2SO4 electrolyte solution. In the presence of H2SO4, the size dispersion decreased, resulting in particles with greater diameters (up to 339 nm). The use of electrolyte solution with Na2SO4+H2SO4 revealed lower particle density with a considerable crystal size dispersion, where very small crystallites are prevailing. Cyclic voltammetry was used to evaluate qualitatively the catalytic activity of CuNPs deposited from three electrolyte solutions towards the nitrate reduction reaction. An enhanced catalytic effect was obtained when copper particles were prepared from either Na2SO4 or H2SO4 supporting electrolytes.


Sign in / Sign up

Export Citation Format

Share Document