specific adsorption
Recently Published Documents


TOTAL DOCUMENTS

605
(FIVE YEARS 75)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Vol 64 (1) ◽  
pp. 134
Author(s):  
Е.В. Рутьков ◽  
Н.Р. Галль

It is shown that the adsorption of Be on Re (1010) in the temperature range of 850-950 K leads to the formation of specific adsorption states - surface chemical compounds (SC) of ReBe stoichiometry with a concentration of adsorbed Be atoms of ~ 1.4 • 1015 cm-2. A multilayer film of beryllium (3-4 layers) is destroyed upon heating, and at 900 K all Be atoms leave the surface into the bulk of rhenium, except those that are part of the SC; atoms from the SC, in turn, actively dissolve at T> 1050-1150 K. This corresponds to a decrease in the activation energy of dissolution upon the formation of SC from about 3.3 to 2.7 eV. Thermal desorption of beryllium takes place only at T> 2100 K due to the emergence of Be atoms dissolved in the bulk of the metal onto the surface.


2021 ◽  
Author(s):  
Yanbing lv ◽  
Man Zhao ◽  
Jinjin Fan ◽  
Ruili Wu ◽  
Yanxia Xu ◽  
...  

Abstract Background The development of functionalized surfaces with low non-specific adsorption is important for biomedical applications. To inhibit non-specific adsorption on a substrate, we prepared a novel optical biochip based on a quantum dot fluorescence immunosorbent assay (QD-FLISA), specifically by modifying a layer of dense negatively charged film (SO32−) on the glass substrate surface via self-assembly. Results Using optimized conditions, we constructed a biochip on functionalized glass substrates to achieve quantitative detection of C-reactive protein (CRP). We subsequently achieved quantitative determination of CRP in the range of 1-1,000 ng/mL, with a limit of detection (LOD) of 1.26 ng/mL or 5.17 ng/mL, using poly(styrene sulfonic acid) sodium salt (PSS) or meso-tetra (4-sulfonatophenyl) porphine dihydrochloride (TSPP) on individually modified glass substrate biochips. The experimental protocol was further optimized and the LOD achieved a sensitivity of 0.69 ng/mL using functionalized TSPP and PSS co-treated glass substrate surfaces for the quantitative detection of CRP. Conclusions This work demonstrated an effective and convenient strategy to obtain biochips with low non-specific adsorption properties on functionalized surfaces, thus providing a new approach for creating ultra-high sensitivity microchannels or microarrays on glass substrates.


2021 ◽  
Author(s):  
◽  
Omar Ahmed Alsager

<p>Aptamers are synthetic nucleic acid single stranded (ss)DNAs or RNAs that can bind with high affinity and specificity to a broad range of targets, including proteins and low molecular weight molecules. This work presents the design, development and implementation of novel aptamer based sensors (aptasensors) for the detection of a target of environmental and medical significance - 17-β estradiol (E2). By combining a previously isolated E2 binding 75-mer ssDNA aptamer with a variety of different signal transducers, E2 was successfully detected and quantified below the environmental and biological relevant concentrations. By applying the same aptamer to different sensor formats, the advantages and disadvantages of each signal transduction mechanism were compared.  Target-induced conformational switch within an aptamer molecule can be transduced via labelling different sections of the aptamer with pairs of fluorescent dyes or with a redox probe, however those strategies require detailed knowledge of specific aptamer conformations and target interaction sites. Herein, a label free method is developed - size based aptasensor described in Chapter 2. The new method only depends on the general property that small molecule binding aptamers adopt a more compact folded structure when they bind to their target. Dynamic light scattering (DLS) and tunable resistive pulse sensing (TRPS) were used to probe recognition events between E2 and aptamers conjugated to carboxylated polystyrene nanoparticles (NPs). Upon E2 recognition, a distinct reduction in size and a less negative surface potential of the conjugated particles were observed, which can be correlated to the concentration of E2 in the lower nanomolar range (as low as 5 nM).  On-site monitoring of E2 requires rapid and sensitive screening methods with minimal instrumentation. Previously, gold nanoparticles (AuNPs) were exploited in the construction of colorimetric aptasensors for different targets. Aggregation assays produce colorimetric signals observed by naked-eye when target-bound aptamers dissociate from AuNP surfaces, triggering aggregation. However, it is unknown how the length of aptamer sequences affects their dissociation from AuNP surfaces and subsequent aggregation. Chapter 3 demonstrates the benefit of editing aptamer sequences with specific regard to the way signals are transduced in AuNP based colorimetric assays. The 20 flanking nucleotides to the 35-mer inner core of the parent 75-mer aptamer were eliminated. The 35-mer aptamer has a lower dissociation constant KD (14 nM vs. 25 nM), improved discrimination against other steroidal molecules and greatly improve the sensitivity for E2 detection from 5 nM to 200 pM. In fact, this simple strategy enabled facile detection of E2 in urine at 5 nM, approaching levels of biological relevance.  There is a pressing demand for methods with accurate and rapid performance to detect and quantify E2, at levels comparable or even below the biological concentrations to eliminate pre-concentration and sample purification process. Existing electrochemical aptasensors feature DNA probes covalently tethered to various surfaces including gold and conducting polymer electrode. An electrochemical impedance spectroscopy (EIS) based sensor was created using nanoporous conducting polymer electrodes functionalized with the 75-mer aptamer. The one fM detection limit found is one order of magnitude lower than the recorded biological level. As a novel alternative approach, sensing electrodes were also created via the non-specific adsorption of the 35-mer onto Au and Au nanoparticle electrodes. This approach, described in Chapter 4, led to the same level of detection as the conducting polymer aptasensor, but via a mechanism with similarities to the colorimetric sensor. Non-specific adsorption of aptamers to Au was found to play additional favourable roles including self-passivation and stabilization of Au nanoparticle based electrodes. Sensing with this format might remove the need for laborious surface passivation with alkylthiol molecules encountered with the conventional covalent attachment of the DNAs through thiol-linkers.  In general, the reported aptasensors provide efficient means to detect the steroidal molecule E2 as well as advance the understanding of aptasensors by comparing the performance of the same aptamer in various sensing platforms. Long aptamers sequences appeared to be more efficient in signal transduction when specific surface tethering is involved, as in the size-based assay, and the electrochemical assay with aptamers covalently tethered to the electrode. Here, the non-binding flanking nucleotides, i.e. nucleotides adjacent to the target binding pocket, appeared to amplify the sensing signals. However, shorter truncated sequences showed better performance when signal generation depends on surface dissociation of non-specifically adsorbed aptamer sequences, as in the colorimetric assay, and the electrochemical sensor constructed from adsorbed aptamers. These insights can be readily applied to aptasensors for the growing range of targets.</p>


2021 ◽  
Author(s):  
◽  
Omar Ahmed Alsager

<p>Aptamers are synthetic nucleic acid single stranded (ss)DNAs or RNAs that can bind with high affinity and specificity to a broad range of targets, including proteins and low molecular weight molecules. This work presents the design, development and implementation of novel aptamer based sensors (aptasensors) for the detection of a target of environmental and medical significance - 17-β estradiol (E2). By combining a previously isolated E2 binding 75-mer ssDNA aptamer with a variety of different signal transducers, E2 was successfully detected and quantified below the environmental and biological relevant concentrations. By applying the same aptamer to different sensor formats, the advantages and disadvantages of each signal transduction mechanism were compared.  Target-induced conformational switch within an aptamer molecule can be transduced via labelling different sections of the aptamer with pairs of fluorescent dyes or with a redox probe, however those strategies require detailed knowledge of specific aptamer conformations and target interaction sites. Herein, a label free method is developed - size based aptasensor described in Chapter 2. The new method only depends on the general property that small molecule binding aptamers adopt a more compact folded structure when they bind to their target. Dynamic light scattering (DLS) and tunable resistive pulse sensing (TRPS) were used to probe recognition events between E2 and aptamers conjugated to carboxylated polystyrene nanoparticles (NPs). Upon E2 recognition, a distinct reduction in size and a less negative surface potential of the conjugated particles were observed, which can be correlated to the concentration of E2 in the lower nanomolar range (as low as 5 nM).  On-site monitoring of E2 requires rapid and sensitive screening methods with minimal instrumentation. Previously, gold nanoparticles (AuNPs) were exploited in the construction of colorimetric aptasensors for different targets. Aggregation assays produce colorimetric signals observed by naked-eye when target-bound aptamers dissociate from AuNP surfaces, triggering aggregation. However, it is unknown how the length of aptamer sequences affects their dissociation from AuNP surfaces and subsequent aggregation. Chapter 3 demonstrates the benefit of editing aptamer sequences with specific regard to the way signals are transduced in AuNP based colorimetric assays. The 20 flanking nucleotides to the 35-mer inner core of the parent 75-mer aptamer were eliminated. The 35-mer aptamer has a lower dissociation constant KD (14 nM vs. 25 nM), improved discrimination against other steroidal molecules and greatly improve the sensitivity for E2 detection from 5 nM to 200 pM. In fact, this simple strategy enabled facile detection of E2 in urine at 5 nM, approaching levels of biological relevance.  There is a pressing demand for methods with accurate and rapid performance to detect and quantify E2, at levels comparable or even below the biological concentrations to eliminate pre-concentration and sample purification process. Existing electrochemical aptasensors feature DNA probes covalently tethered to various surfaces including gold and conducting polymer electrode. An electrochemical impedance spectroscopy (EIS) based sensor was created using nanoporous conducting polymer electrodes functionalized with the 75-mer aptamer. The one fM detection limit found is one order of magnitude lower than the recorded biological level. As a novel alternative approach, sensing electrodes were also created via the non-specific adsorption of the 35-mer onto Au and Au nanoparticle electrodes. This approach, described in Chapter 4, led to the same level of detection as the conducting polymer aptasensor, but via a mechanism with similarities to the colorimetric sensor. Non-specific adsorption of aptamers to Au was found to play additional favourable roles including self-passivation and stabilization of Au nanoparticle based electrodes. Sensing with this format might remove the need for laborious surface passivation with alkylthiol molecules encountered with the conventional covalent attachment of the DNAs through thiol-linkers.  In general, the reported aptasensors provide efficient means to detect the steroidal molecule E2 as well as advance the understanding of aptasensors by comparing the performance of the same aptamer in various sensing platforms. Long aptamers sequences appeared to be more efficient in signal transduction when specific surface tethering is involved, as in the size-based assay, and the electrochemical assay with aptamers covalently tethered to the electrode. Here, the non-binding flanking nucleotides, i.e. nucleotides adjacent to the target binding pocket, appeared to amplify the sensing signals. However, shorter truncated sequences showed better performance when signal generation depends on surface dissociation of non-specifically adsorbed aptamer sequences, as in the colorimetric assay, and the electrochemical sensor constructed from adsorbed aptamers. These insights can be readily applied to aptasensors for the growing range of targets.</p>


Author(s):  
Serghei Travin

The possibilities of application of the Monte-Carlo method for simulating the consequences of pollutants emissions with specific adsorption on the underlying surface were considered. Effective methods of obtaining kinetic curves for the concentration of a pollutant for a selected square on the field and constructing contamination profiles for a specified time are analysed. The estimation of the necessary parameters of the model for obtaining high-quality kinetic curves was performed and recommendations for their optimization are given. Specific fronts for the spot propagation were obtained and visualised.


2021 ◽  
pp. 139563
Author(s):  
Sara Grecchi ◽  
Serena Arnaboldi ◽  
Abdirisak Ahmed Isse ◽  
Chiara D'Aloi ◽  
Armando Gennaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document