Kinetics, stoicheiometry, and mechanism in the bromination of aromatic heterocycles. I. Aqueous bromination of pyrazole, 1-methylpyrazole, and 3,5-dimethylpyrazole

1971 ◽  
Vol 24 (7) ◽  
pp. 1413 ◽  
Author(s):  
BE Boulton ◽  
BAW Coller

A procedure is described for monitoring the reactivity of a substrate towards bromine in aqueous bromide solutions, as a function of extent of reaction, by following the changes of electrode potential with time in the intervals between successive periods of electrolysis. ��� The title compounds show 1 : 1 stoicheiometry with substitution in the 4-position. The observed rate behaviour may be understood in terms of direct attack by molecular bromine on the neutral substrate molecules, rate coefficients for dilute aqueous solution at 25�C being: ����� k20(Br2+pyrazole) = 3.8x105 dm3 mol-1 s-1, kH/kD = 1.39;����� k20(Br2+1.methylpyrazole) = 8.0x105 dm3 mol-1 s-1;����� k20(Br2+3,5-dimethylpyrazole) = 1.4x109 dm3 mol-1 s-1, kH/kD = 1.08 Values of pKa(pyrazole-H+) = 2.58 and pKa(3,5-dimethylpyrazole-H+) = 4.11 were determined by potentiometric titration methods.

1968 ◽  
Vol 17 (3) ◽  
pp. 354-355 ◽  
Author(s):  
Atsushi MIZUIKE ◽  
Shigeki KANO

1965 ◽  
Vol 18 (5) ◽  
pp. 651 ◽  
Author(s):  
RW Green ◽  
PW Alexander

The Schiff base, N-n-butylsalicylideneimine, extracts more than 99.8% beryllium into toluene from dilute aqueous solution. The distribution of beryllium has been studied in the pH range 5-13 and is discussed in terms of the several complex equilibria in aqueous solution. The stability constants of the complexes formed between beryllium and the Schiff base are log β1 11.1 and log β2 20.4, and the distribution coefficient of the bis complex is 550. Over most of the pH range, hydrolysis of the Be2+ ion competes with complex formation and provides a means of measuring the hydrolysis constants. They are for the reactions: Be(H2O)42+ ↔ 2H+ + Be(H2O)2(OH)2, log*β2 - 13.65; Be(H2O)42+ ↔ 3H+ + Be(H2O)(OH)3-, log*β3 -24.11.


2001 ◽  
Vol 79 (4) ◽  
pp. 370-376 ◽  
Author(s):  
Catherine Morlay ◽  
Yolande Mouginot ◽  
Monique Cromer ◽  
Olivier Vittori

The possible removal of copper(II), nickel(II), or lead(II) by an insoluble crosslinked poly(acrylic acid) was investigated in dilute aqueous solution. The binding properties of the polymer were examined at pH = 6.0 or 4.0 with an ionic strength of the medium µ = 0.1 or 1.0 M (NaNO3) using differential pulse polarography as an investigation means. The highest complexing capacity of the polyacid was obtained with lead(II) at pH = 6.0 with µ = 0.1 M, 4.8 mmol Pb(II)/g polymer. The conditional stability constants of the complex species formed were determined using the method proposed by Ruzic assuming that only the 1:1 complex species was formed; for lead(II) at pH = 6.0 and µ = 0.1 M, log K' = 5.3 ± 0.2. It appeared that the binding properties of the polymer increased, depending on the metal ion, in the following order: Ni(II) < Cu(II) < Pb(II). The complexing capacity and log K' values decreased with the pH or with an increase of the ionic strength. These results were in agreement with the conclusions of our previous studies of the hydrosoluble linear analogues. Finally, with the insoluble polymer, the log K' values were comparable to those previously obtained with the linear analogue whereas the complexing capacity values expressed in mmol g-1 were slightly lower.Key words: insoluble crosslinked poly(acrylic acid), copper(II), nickel(II), and lead(II) complexation.


Sign in / Sign up

Export Citation Format

Share Document