Bisphenol flukicides. VI. The crystal and molecular structures of 2,2'-(Phenoxymethylene)bis(4-chloro-6-nitrophenol) and a triethylamine adduct of 2,2'-(Benzyloxymethylene)bis(4-chloro-6-nitrophenol)

1982 ◽  
Vol 35 (2) ◽  
pp. 341 ◽  
Author(s):  
DG Hay ◽  
MF Mackay

X-ray crystallographic analyses have defined the conformational detail in the title compounds. Crystals of 2,2'-(phenoxymethylene)bis(4-chloro-6-nitrophenol) (1), Cl9H12Cl2N2O7, are monoclinic: space group P21/n, a 8.616(1), b 16.214(1), c l3.727(1) �, β 92.13(1)� and Z 4. The triethylamine adduct of 2,2'-(benzyloxymethylene)bis(4-chloro-6-nitrophenol) (2),Et3N, C20H14Cl2N2O7,C6H15N, crystallizes in the monoclinic space group P21/c with a 9.454(1), b 11.911(2), c 25.392(2) �, ββ 109.96(1)� and Z 4. The structures were refined with diffractometer data measured with Cu Kα radiation to R 0.061 (1761 terms) for (1) and R 0.063 (1230 terms) for (2),Et3N. The methylenebisphenol moieties in the molecules of (1) and (2) adopt twist and butterfly conformations respectively. In (1), the dihedral angles between the perpendiculars to the plane of the C-C-C bridge and the phenol rings are 61.1(4) and 71.6(4)�; in (2), these angles have values of 88.0(8) and 85.6(7)�.

1992 ◽  
Vol 45 (2) ◽  
pp. 429 ◽  
Author(s):  
AT Baker ◽  
MT Emett

The structures of [Pt(S2CN(C2H5)2)2] (1) and [Pt(S2CN(C2H4OH)2)2] (2) have been determined by single-crystal X-ray diffractometry. Compound (1) crystallizes in the tetragonal space group P42/n, a 16.4692(10),c 6.2160(6) � (Z = 4); R was 0.029 for 1012 observed reflections. Compound (2) is monoclinic, space group Pc, a 6-0663(11), b 1.1784(15), c 12.5740(21) � ,β92.569(8)� (Z = 2); R was 0.019 for 1573 observed reflections. The presence of electron-withdrawing groups in the ligands of (2) appears to have little effect on the Pt-S distances but causes an increase in the C-N bond length, with the C-N bond lengths being significantly different at the 2 σ level.


1983 ◽  
Vol 36 (1) ◽  
pp. 183 ◽  
Author(s):  
EJ O'Reilly ◽  
G Smith ◽  
CHL Kennard ◽  
AH White

The crystal structures of two copper(II) complexes of the herbicide Picloram (4-amino-3,5,6-trichloro- pyridine-2-carboxylic acid) have been determined by single-crystal X-ray diffractometry. Bis(4-amino- 3,5,6-trichloropyridine-2-carboxylato)aquacopper(II) dihydrate (1) is monoclinic, space group C2/c, with Z 4 in a cell of dimensions a 15.593(6), b 7.940(6), c 16.983(6) �, β 107.58(3)�. The structure was refined to a residual R 0.046 for 905 'observed' reflections. Complex (1) is trigonal bipyramidal with the trigonal plane consisting of oxygens from two picolinate ligands [Cu-O 1.995(5) �] and a water molecule [Cu-O 2.080(5) �]. The apical positions are occupied by pyridine ring nitrogens from the Picloram ligands [Cu-N 2.021(5) �]. Bis(4-amino-3,5,6-trichloropyridine- 2-carboxylato)bis(pyrimidin-2-amine)copper(II) (2) is monoclinic, space group P2,/c, with Z 4 in a cell of dimensions a 12.3 11(5), b 15.435(5), c 15.320(6) �, β 115.95(3)�, and gave a final R 0.059 for 2429 'observed' reflections. In complex (2), the copper(II) atom has a tetragonally distorted octahedral stereochemistry with the Picloram ring nitrogens once again occupying the two axial positions [Cu-N 2.586(7) and 2.611(7) �]. The square plane consists of two carboxylato oxygens [Cu-O 1.941(6) and 1.960(7) �] and two hetero-nitrogens from pyrimidin-2-amine ligands [Cu-N 2.048(6) and 2.054(6) �].


Author(s):  
G. D. Nigam ◽  
G. Mattern ◽  
R. Fröhlich

AbstractThe crystal and molecular structures of 1-(m-nitrophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (I) and 1-(p-chlorophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (II) have been determined by X-ray diffraction methods. (I) crystallizes in the monoclinic space group


Author(s):  
G. Dewald ◽  
M. Hanack ◽  
E.-M. Peters ◽  
L. Walz

AbstractThe crystal and molecular structures of dimorphic 10,10′-(1,4-phenylene-dimethylidene)-bis-9,10-H-anthracenone (1) have been determined using X-ray diffraction data. The compound crystallizes either in the monoclinic space groupSince all non-hydrogen atoms are of pure


2000 ◽  
Vol 55 (11) ◽  
pp. 1005-1010 ◽  
Author(s):  
Ulrich Jürgen Bildmann ◽  
Martin Winkler ◽  
Gerhard Müller Fachbereich

The crystal and molecular structures of the phosphinomethyl-substituted lithium cyclopentadienides [Li(tmeda)][R2PCMe2C5H4], R = Ph (1), Me (2) (tmeda = N,N,N',N'-tetramethylethylenediamine) were determined as their tmeda adducts on the basis of low temperature single crystal X-ray diffraction. (Crystal data: 1: monoclinic, space group P21/n, a = 8.511(5), b = 11.936(2), c = 24.20(1) Å, β = 90.02(3)°, Z = 4.2: monoclinic, space group P21/n, a = 10.887(2), b = 13.326(2), c = 13.131(2) Å, β= 92.872(6)°, Z = 4). In both compounds lithium has a slightly distorted 17 coordination to the cyclopentadienide (Cp) ring. There are no interactions between lithium and the phosphine donors in the solid state as the phosphinomethyl substituents are oriented to the other side of the Cp ring for steric reasons. The isopropene-substituted lithium cyclopentadienide, which is formed as a by-product in the synthesis of phosphinomethyl cyclopentadienides containing a CMe2 bridge, was also structurally characterized as its tmeda adduct [Li(tmeda)][H2C=CMeC5H4] (3). (Crystal data: monoclinic, P21/c, a = 8.00(2), b = 16.701(2), c = 11.942(6) Å, β= 112.68(7)°, Z = 4). As in 1 and 2, lithium is η5 -coordinated to the Cp ring, and there is no interaction of the functional group (isopropene) with lithium.


1978 ◽  
Vol 31 (4) ◽  
pp. 781 ◽  
Author(s):  
R Mason ◽  
GR Scollary

The crystal and molecular structures of two rhodium(I) complexes with long-chain alkyne- or alkene-α,ω-diyldiphosphines have been determined by single-crystal X-ray diffraction techniques. RhCl(CO){But2P(CH2)4C≡C(CH2)4PBut2} crystallizes in the orthorhombic space group Pna21 with a 21.991 (2), b 11.915(1), c 11.890(1) Ǻ and Z 4. The structure was refined by least-squares methods to a conventional R factor of 0.097 for 1768 independent reflections (Mo Kα diffraction data). The rhodium ion is in a square-planar coordination geometry with trans-phosphorus atoms; the unsaturated (alkynyl) group is not bonded to the rhodium. Crystals of RhCl{But2P(CH2)2CH=CH(CH2)2- PBut2} are monoclinic, space group P21/c, a 20.783(12), b 8.580(4), c 14.799(9) Ǻ, β 100.70(2)°, Z 4. The structure analysis has converged to R 0.069 for 1417 reflections (Mo Kα diffractometry); the coordination geometry of the rhodium is again planar with the ethylenic group occupying a single bonding site. The effect of ring size on the rhodium-phosphorus bond lengths is discussed.


1982 ◽  
Vol 35 (7) ◽  
pp. 1311 ◽  
Author(s):  
MA Bennett ◽  
K Ho ◽  
JC Jeffery ◽  
GM Mclaughlin ◽  
GB Robertson

Crystal and molecular structures of the title compounds have been determined from three dimensional X-ray diffraction data recorded on a four-circle diffractometer. Crystals of the acetyl complex, trans-PtCl(COMe)(PMePh2)2,(1), are monoclinic, space group P2,1/c, with a 12.9709(5), b 11.1024(5), c 277535(9) Ǻ, β 94.75(1)° and Z 6. Crystals of the trifluoroacetyl complex, trans-PtCl(COCF3)- (PMePh2)2, (2), are monoclinic, space group P21/n (non-standard setting of P21c), with a 11.4246(7), b 15.5750(7), c 15.4200(8) Ǻ, β 90.54(1)° and Z 4. For (I), with Z 6, the unit cell contains one set of four equivalent molecules in the general equipoint and one set of two equivalent (disordered) molecules located at inversion centres. The four molecules in (2) comprise a single equivalent set in the general equipoint. Least-squares analyses converge with R 0.042 for (1) (5696 unique data) and R 0.025 for (2) (3933 unique data). Molecules of both complexes exhibit small deformations from planar towards tetrahedral platinum geometry; the acyl and coordination planes are approximately orthogonal. The phosphine substituents in (2) and in the 'general' molecules in (1) are approximately eclipsed, and approximately eclipse the Pt-C (acetyl) bonds. In the 'special' molecules in (1) the phosphines are constrained to adopt the mutually staggered conformation found in the alkyl analogues trans-PtClR(PMePhM2)2 (R = Me, CF3, C2F2). Important comparative lengths in (1) (general molecule) and in (2) (in square brackets) are: Pt-C 2.028(6) [1.960(4)] A, Pt-Cl 2.430(2) [2.390(1)] Ǻ, Pt-P 2.301(2), 2.297(2) [2.316(1), 2.321(1)] A, C-O 1.182(8) [1.210(5)] 8, and C C (acetyl) 1.488(10) [1.547(6)] A. The trifluoroacetyl ligand forms a shorter and presumably stronger bond with platinum, and exerts a larger cis- and a smaller trans-influence than the acyl ligand. The smaller trans-influence of the trifluoroacetyl ligand is consistent with the expectation from platinum-chlorine stretching frequencies (v(Pt-Cl)).


1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


1984 ◽  
Vol 37 (6) ◽  
pp. 1171 ◽  
Author(s):  
DG Allen ◽  
CL Raston ◽  
BW Skelton ◽  
AH White ◽  
SB Wild

The (�)-benzyl(methyl)(4-methylphenyl)(naphthalen-1-yl)arsonium cation has been synthesized and subsequently resolved by fractional crystallization of monohydrogen [R-(R*,R*)]-2,3-bis(benzoyloxy)- butanedioate salts. The separated diastereoisomers were converted into the corresponding optically active arsonium bromides by ion-exchange column chromatography. The absolute configuration of the arsonium cation exhibiting a positive rotation at 589 nm (sodium D line) has been established as (R) by single-crystal X-ray analysis of both the bromide and hexafluorophosphate salts. The arsonium bromide with [α]D + 54.8�(c, 0.62 in CH2Cl2) crystallizes in the orthorhombic space group P212121 (D24, No.19) with a 22.472(8), b 15.724(7), c 12.585(5) � and U 4447(3) �3. The corresponding hexafluorophosphate with [α]D + 19.3� (c, 0.5 in CH2Cl2) crystallizes in the same space group with a 23.56(2), b 16.40(1), c 13.12(1) � and U 5067(6) � 3. Benzylidene transfer to benzaldehyde from the arsonium ylide derived from either of the arsonium salts produced optically pure (–)-(S)-methyl(4-methylphenyl)(naphthalen-1-yl)arsine, [α]D - 115.9� (c, 0.593 in CHCl3), and partly resolved [R-(R*,R*)]-2,3-diphenyloxiran.


Sign in / Sign up

Export Citation Format

Share Document