Copper complexes of Picloram: The crystal and molecular structures of Bis(4-amino-3,5,6-trichloropyridine-2-carboxylato)aquacopper(II) dihydrate and Bis(4-amino-3,5,6-trichloropyridine-2-carboxylato)bis(pyrimidin-2-amine)copper(II)

1983 ◽  
Vol 36 (1) ◽  
pp. 183 ◽  
Author(s):  
EJ O'Reilly ◽  
G Smith ◽  
CHL Kennard ◽  
AH White

The crystal structures of two copper(II) complexes of the herbicide Picloram (4-amino-3,5,6-trichloro- pyridine-2-carboxylic acid) have been determined by single-crystal X-ray diffractometry. Bis(4-amino- 3,5,6-trichloropyridine-2-carboxylato)aquacopper(II) dihydrate (1) is monoclinic, space group C2/c, with Z 4 in a cell of dimensions a 15.593(6), b 7.940(6), c 16.983(6) �, β 107.58(3)�. The structure was refined to a residual R 0.046 for 905 'observed' reflections. Complex (1) is trigonal bipyramidal with the trigonal plane consisting of oxygens from two picolinate ligands [Cu-O 1.995(5) �] and a water molecule [Cu-O 2.080(5) �]. The apical positions are occupied by pyridine ring nitrogens from the Picloram ligands [Cu-N 2.021(5) �]. Bis(4-amino-3,5,6-trichloropyridine- 2-carboxylato)bis(pyrimidin-2-amine)copper(II) (2) is monoclinic, space group P2,/c, with Z 4 in a cell of dimensions a 12.3 11(5), b 15.435(5), c 15.320(6) �, β 115.95(3)�, and gave a final R 0.059 for 2429 'observed' reflections. In complex (2), the copper(II) atom has a tetragonally distorted octahedral stereochemistry with the Picloram ring nitrogens once again occupying the two axial positions [Cu-N 2.586(7) and 2.611(7) �]. The square plane consists of two carboxylato oxygens [Cu-O 1.941(6) and 1.960(7) �] and two hetero-nitrogens from pyrimidin-2-amine ligands [Cu-N 2.048(6) and 2.054(6) �].

1992 ◽  
Vol 45 (2) ◽  
pp. 429 ◽  
Author(s):  
AT Baker ◽  
MT Emett

The structures of [Pt(S2CN(C2H5)2)2] (1) and [Pt(S2CN(C2H4OH)2)2] (2) have been determined by single-crystal X-ray diffractometry. Compound (1) crystallizes in the tetragonal space group P42/n, a 16.4692(10),c 6.2160(6) � (Z = 4); R was 0.029 for 1012 observed reflections. Compound (2) is monoclinic, space group Pc, a 6-0663(11), b 1.1784(15), c 12.5740(21) � ,β92.569(8)� (Z = 2); R was 0.019 for 1573 observed reflections. The presence of electron-withdrawing groups in the ligands of (2) appears to have little effect on the Pt-S distances but causes an increase in the C-N bond length, with the C-N bond lengths being significantly different at the 2 σ level.


1984 ◽  
Vol 37 (2) ◽  
pp. 443 ◽  
Author(s):  
AT Baker ◽  
HA Goodwin ◽  
AD Rae

The crystal structure of an iron(II) complex of 2-(pyridin-2-ylamino)-4-(pyridin-2-yl)tliazoe (paptH) has been determined by single-crystal X-ray diffractometry. [Fe(paptH)2] [BF4]2.3H2O is monoclinic, space group P21/c, with Z = 4 in a cell of dimensions a 8.968(6), b 9.038(4), c 41.15(2)�, β 94.81(2)�. The disordered structure was refined to a residual R 0.0826 for 2549 observed reflections. The ligands and anions are orientationally disordered, and the waters of crystallization are positionally disordered. Comprehensive constrained refinement, with 220 parameters for 139 atom positions, produced reliable geometry. The complex cation has a distorted octahedral structure of meridional configuration with both paptH ligands functioning as tridentates.


1982 ◽  
Vol 35 (2) ◽  
pp. 331 ◽  
Author(s):  
J Sachinidis ◽  
MF Mackay ◽  
MW Grant

X-ray analyses of monoclinic crystals of the bispyridine and 1,10-phenanthroline adducts of the monothioacetylacetonate complex bis(ethyl 3-mercaptobut-2-enoato)nickel(n), Ni(eosm)2,* have defined their structures. Crystals of the bispyridine adduct Ni(eosm)2,py2, C22H28N2NiO4S2, belong to the space group P21/c with a 8.865(6), b 15.758(4), c 9.136(3)Ǻ, β 109.18(4)°, Z 2. Crystals of the 1,10-phenanthroline adduct Ni(eosm)2,phen, C24H26N2NiO4S2, belong to the space group P21c with a 12.451(2), b 16.949(1), c 15 5921(2) Ǻ, β 130.97(1)°, Z 4. The structures were refined with diffractometer data measured with Cu Ka radiation to R 0.047 (1962 terms) for the bispyridine adduct and R 0.061 (3115 terms) for the phenanthroline adduct. The geometry about the nickel in each complex is distorted octahedral. The molecule of the bispyridine adduct has exact rn symmetry with the two sulfur atoms cis-equatorial and the nitrogen atoms axial. In the phenan- throline adduct, pairs of sulfur, nitrogen and oxygen atoms are in cis configurations. In the bis-pyridine adduct, the Ni-N bond lengths, 2.153(3) and 2.182(4) Ǻ, are significantly longer than those in other bispyridine adducts of nickel(II) species. It is suggested that the long Ni-N distances reflect the relative instability of the bispyridine adduct, and thermodynamic data are presented to support this.


1982 ◽  
Vol 35 (2) ◽  
pp. 341 ◽  
Author(s):  
DG Hay ◽  
MF Mackay

X-ray crystallographic analyses have defined the conformational detail in the title compounds. Crystals of 2,2'-(phenoxymethylene)bis(4-chloro-6-nitrophenol) (1), Cl9H12Cl2N2O7, are monoclinic: space group P21/n, a 8.616(1), b 16.214(1), c l3.727(1) �, β 92.13(1)� and Z 4. The triethylamine adduct of 2,2'-(benzyloxymethylene)bis(4-chloro-6-nitrophenol) (2),Et3N, C20H14Cl2N2O7,C6H15N, crystallizes in the monoclinic space group P21/c with a 9.454(1), b 11.911(2), c 25.392(2) �, ββ 109.96(1)� and Z 4. The structures were refined with diffractometer data measured with Cu Kα radiation to R 0.061 (1761 terms) for (1) and R 0.063 (1230 terms) for (2),Et3N. The methylenebisphenol moieties in the molecules of (1) and (2) adopt twist and butterfly conformations respectively. In (1), the dihedral angles between the perpendiculars to the plane of the C-C-C bridge and the phenol rings are 61.1(4) and 71.6(4)�; in (2), these angles have values of 88.0(8) and 85.6(7)�.


Author(s):  
G. D. Nigam ◽  
G. Mattern ◽  
R. Fröhlich

AbstractThe crystal and molecular structures of 1-(m-nitrophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (I) and 1-(p-chlorophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (II) have been determined by X-ray diffraction methods. (I) crystallizes in the monoclinic space group


Author(s):  
G. Dewald ◽  
M. Hanack ◽  
E.-M. Peters ◽  
L. Walz

AbstractThe crystal and molecular structures of dimorphic 10,10′-(1,4-phenylene-dimethylidene)-bis-9,10-H-anthracenone (1) have been determined using X-ray diffraction data. The compound crystallizes either in the monoclinic space groupSince all non-hydrogen atoms are of pure


2006 ◽  
Vol 84 (7) ◽  
pp. 971-978 ◽  
Author(s):  
Soria Meghdadi ◽  
Mehdi Amirnasr ◽  
Vratislav Langer ◽  
Alison Zamanpoor

Cobalt(II), nickel(II), copper(II), and two cobalt(III) complexes of a new dianionic ligand, bqb, [H2bqb = N,N'-bis(2-quinolinecarboxamide)-1,2-benzene] have been synthesized and characterized by elemental analyses, IR, and 1H NMR spectroscopy. The crystal and molecular structures of the [Ni(bqb)] (2) and [N(n-Bu)4][CoIII(bqb)(N3)2] (5) complexes were determined by X-ray crystallography. Complex 2 crystallizes in the monoclinic space group C2/c with a distorted square-planar structure including two short Ni–N (1.848 Å) and two long Ni–N (1.958 Å) bonds. The structure consists of sheets formed in the plane parallel to the b axis and diagonal to vectors a and c by intermolecular hydrogen bonds. Complex 5 crystallizes in the monoclinic space group C2 with a distorted octahedral structure. The [N(n-Bu)4]+ ion is disordered at the C3A and C4A atoms of one Bu. The IR and 1H NMR spectra of the complexes are also discussed.Key words: N4-dianionic amido ligand (bqb), (bqb) complexes of Co(II), Ni(II), Cu(II), and Co(III), azide, cyanide, X-ray crystal structures.


1983 ◽  
Vol 36 (11) ◽  
pp. 2175 ◽  
Author(s):  
G Smith ◽  
EJ O'Reilly ◽  
CHL Kennard

The crystal structures of the herbicide, dicamba (3,6-dichloro-2-methoxybenzoic acid) and the zinc(II) complex of this acid, {[Zn(dicamba)2(H2O)3].2H2O}}n (1), have been determined from X-ray diffraction data and refined by least squares to final residuals of 0.034 and 0.043 respectively. Dicamba is triclinic, space group P1, Z 2 with a cell a 7.232(1), b 7.971(1), c 9.050(3) �, α 102.76(3), β 91.33(3), γ 110.38(1)�, while (1) is monoclinic, space group P21/n, Z 4 with a cell a 10.467(1), b 8.135(3), c 28.079(2) �, β 96.497(7)�. Dicamba forms hydrogen-bonded cyclic dimers [O---O, 2.655(7) �] with the carboxyl and the methoxy groups synclinal to the benzene ring. The dicamba ligands retain their conformation in the ZnII complex and are cis-related and unidentate [Zn-0,2.083,2.095(4) �]. Three of the waters are coordinated [Zn-0, 2.036, 2.055, 2.099(4) �] with one of these also acting as a bridging ligand between the octahedral zinc centres [Zn-0, 2.326(4) �], giving a 'linear' polymer structure [Zn-0-Zn bridge angle, 133.6(3)�]. The MnII and CoII complexes of dicamba [(2) and (3)] have been confirmed as isomorphous and isostructural with the ZnII analogue.


2000 ◽  
Vol 55 (11) ◽  
pp. 1005-1010 ◽  
Author(s):  
Ulrich Jürgen Bildmann ◽  
Martin Winkler ◽  
Gerhard Müller Fachbereich

The crystal and molecular structures of the phosphinomethyl-substituted lithium cyclopentadienides [Li(tmeda)][R2PCMe2C5H4], R = Ph (1), Me (2) (tmeda = N,N,N',N'-tetramethylethylenediamine) were determined as their tmeda adducts on the basis of low temperature single crystal X-ray diffraction. (Crystal data: 1: monoclinic, space group P21/n, a = 8.511(5), b = 11.936(2), c = 24.20(1) Å, β = 90.02(3)°, Z = 4.2: monoclinic, space group P21/n, a = 10.887(2), b = 13.326(2), c = 13.131(2) Å, β= 92.872(6)°, Z = 4). In both compounds lithium has a slightly distorted 17 coordination to the cyclopentadienide (Cp) ring. There are no interactions between lithium and the phosphine donors in the solid state as the phosphinomethyl substituents are oriented to the other side of the Cp ring for steric reasons. The isopropene-substituted lithium cyclopentadienide, which is formed as a by-product in the synthesis of phosphinomethyl cyclopentadienides containing a CMe2 bridge, was also structurally characterized as its tmeda adduct [Li(tmeda)][H2C=CMeC5H4] (3). (Crystal data: monoclinic, P21/c, a = 8.00(2), b = 16.701(2), c = 11.942(6) Å, β= 112.68(7)°, Z = 4). As in 1 and 2, lithium is η5 -coordinated to the Cp ring, and there is no interaction of the functional group (isopropene) with lithium.


1978 ◽  
Vol 31 (4) ◽  
pp. 781 ◽  
Author(s):  
R Mason ◽  
GR Scollary

The crystal and molecular structures of two rhodium(I) complexes with long-chain alkyne- or alkene-α,ω-diyldiphosphines have been determined by single-crystal X-ray diffraction techniques. RhCl(CO){But2P(CH2)4C≡C(CH2)4PBut2} crystallizes in the orthorhombic space group Pna21 with a 21.991 (2), b 11.915(1), c 11.890(1) Ǻ and Z 4. The structure was refined by least-squares methods to a conventional R factor of 0.097 for 1768 independent reflections (Mo Kα diffraction data). The rhodium ion is in a square-planar coordination geometry with trans-phosphorus atoms; the unsaturated (alkynyl) group is not bonded to the rhodium. Crystals of RhCl{But2P(CH2)2CH=CH(CH2)2- PBut2} are monoclinic, space group P21/c, a 20.783(12), b 8.580(4), c 14.799(9) Ǻ, β 100.70(2)°, Z 4. The structure analysis has converged to R 0.069 for 1417 reflections (Mo Kα diffractometry); the coordination geometry of the rhodium is again planar with the ethylenic group occupying a single bonding site. The effect of ring size on the rhodium-phosphorus bond lengths is discussed.


Sign in / Sign up

Export Citation Format

Share Document