Synthesis of Bis(6-methylquinolin-8-yl)phenylarsine and tris(6-methylquinolin-8-yl)-arsine and certain of their bivalent palladium and zerovalent molybdenum complexes. Crystal and molecular structures of Dichloro- and Diiodo-[bis(6-methylquinolin-8-yl)phenylarsine]palladium(II)

1982 ◽  
Vol 35 (11) ◽  
pp. 2193 ◽  
Author(s):  
GL Roberts ◽  
BW Skelton ◽  
AH White ◽  
SB Wild

The potentially tridentate chelating agent bis(6-methylquinolin-8-yl)phenylarsine (AsN2) and quadridentate tris(6-methylquinolin-8-yl)arsine (AsN2) have been prepared from 6-methyl-8-lithio-quinoline and dichlorophenylarsine or arsenic trichloride, respectively. Both ligands behave as bidentates in complexes of the type [PdX2(AsN2)] and [PdX2(AsN2)] (where X = Cl or I) and as tridentates in [Mo(CO)3(AsN2)] and [Mo(CO)3(AsN2)]. The crystal and molecular structures of [PdCl2(AsN2)],CH2Cl2 and [PdI2(AsN2)] have been determined by single-crystal X-ray analysis. The dichloro complex crystallizes in space group P1 (Ci1; No.2) with a 9.963(3), b 8.555(3), c 16.102(7) �; α 86.64(3), β 82.13(3), γ 85.84(3)�; U 1354.3(9) �3 and Z = 2. The structure was solved by heavy-atom methods and refined by least squares to R 0.044 for 2530 'observed' reflections with 1>3σ(I). The coordination geometry of the palladium(II) atom is pseudo-square-planar in which the potentially tridentate AsN2 is behaving as a bidentate only. There is no evidence of interaction of the remaining 6-methylquinolin-8-yl group with the metal centre, although a weak interaction between the solvent of crystallization and the metal may be present. The diiodo complex similarly crystallizes in the centrosymmetric triclinic space group P1 (Cil ; No.2) with a 13.590(5), b 10.035(2), c 9.435(2) �; α 102.68(2), β 90.10(2), γ 92.99(2)�; U 1253.5(6) �3 and Z = 2. Least- squares refinement led to a convergence with R 0.038 for 3461 'observed' reflections. The structure of this complex was similar to that of the dichloro analogue.

1984 ◽  
Vol 39 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Franz Dirschl ◽  
Heinrich Nöth

The crystal and molecular structures of two trans-1,2,4,5-tetraza-diphospha-3,6-cyclohexane- 3,6-disulfides, 2 and 3, have been determined by X-ray diffraction methods. The 3,6-diphenyl- 1,2,4,5-tetramethyl-derivative 2 crystallizes in the monoclinic system, space group C He. Its P2N 4 heterocycle adopts a twist conformation. In contrast, the hexamethyl derivative 3 is triclinic, space group P1̅, and its ring shows chair conformation. Torsion angles in these two compounds and similar ones reveal less interaction between lone pairs of electrons on adjacent N-atoms in the chair conformation but stronger interaction of those bound to phosphorus. It is suggested that the latter interaction is responsible for the larger N -P -N bond angle (107°) as compared to the smaller one (101°) in the P2N4 rings present in twist conformation.


The structures of tris(ethylene)platinum and bis(ethylene (tetrafluoroethylene)platinum have been established by X-ray and neutron diffraction experiments. Tris(ethylene)platinum [Pt(C 2 H 4 ) 3 ] (I), formed by the displacement of 1, 5-cyclooctadiene from bis(1, 5-cyclooctadiene)platinum by ethylene, crystallizes in the trigonal space group R3̅m ( a = b = 7.225(4), c = 11.054(7) Ǻ, 120K) and [Pt(C 2 H 4 ) 2 (C 2 F 4 )] (II), obtained by the replace­ment of one ethylene ligand in (I) by tetrafluoroethylene, is shown to be triclinic, space group A1̄ with a = 8.680(3), b = 7.432(3), c = 12.716(6), Ǻ α = 90.13(4), β = 109.42(3), γ = 90.17(3)° (155 K). In both complexes, the six ligated carbon atoms are coplanar with the Pt atom at distances dependent primarily on the nature of the substituent at the contact carbon atom: mean Pt–C(H) 2.218(2), mean Pt–C(F) 2.031(5). Concomi­tant variations are recorded for the C═C separations, namely C═C(H), 1.382(7); C═C(F), 1.435(6). (I) exhibits a positional disorder of the ethylene ligands between two equivalent sites.


1993 ◽  
Vol 71 (3) ◽  
pp. 358-363 ◽  
Author(s):  
Juan N. Fernández-G. ◽  
Raúl G. Enríquez ◽  
Amalia Tobón-Cervantes ◽  
Margarita I. Bernal-Uruchurtu ◽  
René Villena-I ◽  
...  

The crystal structures of N,N′-di(2-acetylcyclohexenyl)ethylenediamine (L1) and its copper(II) complex, which crystallizes with one solvent molecule of chloroform (Cu(L1-2H)•CHCl3), were determined. Crystallographic details are as follows: L1 is monoclinic, space group P21/c, with a = 8.280(2), b = 11.692(2), and c = 9.355(2) Å, β = 114.10(2)°, V = 826.7(3) Å3, Z = 2; ρc = 1.22 g cm−3, μ(Cu Kα) = 5.93 cm−1, with the final residual indices of R = 0.046 and Rw = 0.070 for 991 unique reflections. Cu(L1-2H)•CHCl3 is triclinic, space group[Formula: see text] with a = 11.121(3), b = 11.713(3), and c = 8.974(2) Å, α = 99.35(2)°, β = 110.83(2)°, γ = 82.33(2)°, V = 1074(1) Å3, Z = 2; ρc = 1.50 g cm−3, μ(Cu Kα) = 50.74 cm−1, with the final residual indices of R = 0.048 and Rw = 0.077 for 2369 unique reflections. The X-ray diffraction study shows that in the crystal state the ligand L1 is in the methylketonecyclohexanonenamine isomeric form. For the copper complex Cu(L1 2H)•CHC13, the geometry around the metal atom is distorted square planar, and the angle between the chelate ring planes in the complex is 15.1°. An NMR study shows that L1 in solution has the same structure as that observed in the solid state by X-ray diffraction.


1978 ◽  
Vol 31 (4) ◽  
pp. 781 ◽  
Author(s):  
R Mason ◽  
GR Scollary

The crystal and molecular structures of two rhodium(I) complexes with long-chain alkyne- or alkene-α,ω-diyldiphosphines have been determined by single-crystal X-ray diffraction techniques. RhCl(CO){But2P(CH2)4C≡C(CH2)4PBut2} crystallizes in the orthorhombic space group Pna21 with a 21.991 (2), b 11.915(1), c 11.890(1) Ǻ and Z 4. The structure was refined by least-squares methods to a conventional R factor of 0.097 for 1768 independent reflections (Mo Kα diffraction data). The rhodium ion is in a square-planar coordination geometry with trans-phosphorus atoms; the unsaturated (alkynyl) group is not bonded to the rhodium. Crystals of RhCl{But2P(CH2)2CH=CH(CH2)2- PBut2} are monoclinic, space group P21/c, a 20.783(12), b 8.580(4), c 14.799(9) Ǻ, β 100.70(2)°, Z 4. The structure analysis has converged to R 0.069 for 1417 reflections (Mo Kα diffractometry); the coordination geometry of the rhodium is again planar with the ethylenic group occupying a single bonding site. The effect of ring size on the rhodium-phosphorus bond lengths is discussed.


1985 ◽  
Vol 63 (2) ◽  
pp. 503-508 ◽  
Author(s):  
Brenda M. Louie ◽  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Details of the synthesis and physical properties of [Me2Ga(3,5-Me2pz)2]Rh(CO)PPh3 are given. Crystals of [dimethylbis(3,5-dimethyl-1-pyrazolyl)gallato-N,N′](triphenylphosphine)carbonylrhodium(I) – toluene (1:1) are triclinic, a = 10.690(2), b = 12.928(2), c = 13.998(2) Å, α = 77.44(1), β = 83.50(1), γ = 72.70(1)°, Z = 2, space group [Formula: see text]. The structure was solved by conventional heavy-atom methods and was refined by full-matrix least-squares procedures to R = 0.039 and Rw = 0.048 for 5987 reflections with I ≥ 3σ(I). The Rh(I) is in a distorted square planar environment with Rh—N = 2.090(3) and 2.097(2), Rh—CO = 1.815(4), and Rh—P = 2.2700(8) Å. The central six-membered RhGaN4 ring has a steep boat conformation with a [Formula: see text] separation of 3.3819(4) Å.


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


1984 ◽  
Vol 37 (6) ◽  
pp. 1171 ◽  
Author(s):  
DG Allen ◽  
CL Raston ◽  
BW Skelton ◽  
AH White ◽  
SB Wild

The (�)-benzyl(methyl)(4-methylphenyl)(naphthalen-1-yl)arsonium cation has been synthesized and subsequently resolved by fractional crystallization of monohydrogen [R-(R*,R*)]-2,3-bis(benzoyloxy)- butanedioate salts. The separated diastereoisomers were converted into the corresponding optically active arsonium bromides by ion-exchange column chromatography. The absolute configuration of the arsonium cation exhibiting a positive rotation at 589 nm (sodium D line) has been established as (R) by single-crystal X-ray analysis of both the bromide and hexafluorophosphate salts. The arsonium bromide with [α]D + 54.8�(c, 0.62 in CH2Cl2) crystallizes in the orthorhombic space group P212121 (D24, No.19) with a 22.472(8), b 15.724(7), c 12.585(5) � and U 4447(3) �3. The corresponding hexafluorophosphate with [α]D + 19.3� (c, 0.5 in CH2Cl2) crystallizes in the same space group with a 23.56(2), b 16.40(1), c 13.12(1) � and U 5067(6) � 3. Benzylidene transfer to benzaldehyde from the arsonium ylide derived from either of the arsonium salts produced optically pure (–)-(S)-methyl(4-methylphenyl)(naphthalen-1-yl)arsine, [α]D - 115.9� (c, 0.593 in CHCl3), and partly resolved [R-(R*,R*)]-2,3-diphenyloxiran.


1992 ◽  
Vol 45 (2) ◽  
pp. 429 ◽  
Author(s):  
AT Baker ◽  
MT Emett

The structures of [Pt(S2CN(C2H5)2)2] (1) and [Pt(S2CN(C2H4OH)2)2] (2) have been determined by single-crystal X-ray diffractometry. Compound (1) crystallizes in the tetragonal space group P42/n, a 16.4692(10),c 6.2160(6) � (Z = 4); R was 0.029 for 1012 observed reflections. Compound (2) is monoclinic, space group Pc, a 6-0663(11), b 1.1784(15), c 12.5740(21) � ,β92.569(8)� (Z = 2); R was 0.019 for 1573 observed reflections. The presence of electron-withdrawing groups in the ligands of (2) appears to have little effect on the Pt-S distances but causes an increase in the C-N bond length, with the C-N bond lengths being significantly different at the 2 σ level.


1996 ◽  
Vol 51 (10) ◽  
pp. 1473-1485 ◽  
Author(s):  
Cornelius G. Kreiter ◽  
Ernst-Christian Koch ◽  
Walter Frank ◽  
Guido J. Reiß

Upon UV irradiation in THF at 208 K tricarbonyl(η5-2,4-dimethyl-2,4-pentadien-1-yl)- manganese (1) yields solvent stabilized, very reactive dicarbonyl(η5-2,4-dimethyl-2,4-pentadien-1-yl)(tetrahydrofuran)manganese (2), which reacts in situ with one or two molecules of diphenylacetylene (3) and yields four manganese complexes and 1,3-dimethyl-5,6-diphenyl-bicyclo[3.2.1]oct-2-ene-7-one (5), which were separated by HPL chromatography. In addition to tricarbonyl η5-4,6 -dimethyl-1,2-diphenyl-cyclohepta-2,4-dien-1-yl)manganese (4) formed by [5+2]cycloaddition and successive 1,4-H shift, tricarbonyl{ 1′,2′,5′-η-5-methyl-2,3 -diphenyl-5- (2′-methyl-4′,5′-diphenyl-penta-1′,4′-dien-1′,5′-diyl)cyclopent-2-en-1 -one-κ-O}manganese (6) is isolated with a ligand, formed from 2,4-dimethyl-2,4-pentadien-1-yl, two units of 3 and one carbon monoxide. The ligands of tricarbonyl{ 1-4,2′-η-4,6 -dimethyl-1,2-diphenyl-5-(E-1′,2′- diphenyl-vinylen)cyclohepta-1,3-diene}manganese (7), and tricarbonyl{η5-4,6 -dimethyl-1,2-diphenyl-7-(E-1′,2′-diphenyl-vinyl)cyclohepta-2,4-dien-1-yl}m anganese (8) are formed from 2,4-dimethyl-2,4-pentadien-1-yl and of two molecules of 3 each. The crystal and molecular structures of 5 and 6 have been determined by single crystal X-ray diffraction. 5 crystallizes in the triclinic space group P1̅ , a = 992.0(2) pm, b = 996.8(2) pm, c = 1021.0(2) pm, a = 77.67(3)°, β = 61.17(3)°, γ = 88.68(3)°. Complex 6 crystallizes also in the triclinic space group P1̅ ,a = 1023.2(2) pm, b - 1113.8(2) pm, c = 1567.9(3) pm, α = 82.88(3)°, β = 86.93(3)°, 7 = 63.53(3)°. The constitutions of 4, 7 and 8 were elucidated from the IR, NMR and mass spectra. Possible formation mechanisms for the compounds 4-8 are proposed. Complex 7 shows hindered rotations of two phenyl groups with different barriers of energy ΔG≠316 = 68.8 kJ/mol, „ΔH≠ = 67.9 ± 0.7 kJ/mol, ΔS≠ = -2 ± 2 J/mol · K and ΔG≠296 = 60.6 kJ/mol, ΔH≠ = 57.7 ± 1.0 kJ/mol, ΔS≠ = -10 ± 2 J/mol·K due to steric interactions.


1983 ◽  
Vol 38 (9) ◽  
pp. 1054-1061 ◽  
Author(s):  
M. Veith ◽  
O. Recktenwald

Abstract Crystals of Sn4(NtBu)4 (1) are monoclinic, space group P21/c, with cell constants a = 1038.9(4), b = 1468.3(5), c = 1698.8(5) pm, β = 91.6(1)° and Z = 4, while those of Sn4(NtBu)3O (2) are triclinic, space group P 1̄, with dimensions a = 1293.0(5), b = 1027.1(5), c = 1716.7(9) pm, α = 90.9(1), β = 102.5(1), γ = 107.0(1)° and Z = 4. The molecules 1 are held together by van-der-Waals forces, whereas two molecules 2 interact in the crystal by weak 0→Sn donor bonds (290-332 pm) forming dimers. The outstanding structural elements of 1 and 2 are the Sn4N4 and Sn4N3O polyhedra, which can be described by two interpenetrating tetrahedra of tin atoms and of nitrogen or nitrogen and oxygen atoms forming a distorted cube, which approaches 4̄3 m symmetry in the case of 1 and 3m for 2. Characteristic distances are in 1: Sn-N 220.2 pm, in 2: Sn-N 221.3 pm and Sn-O 213.2 pm. An almost ionic bonding model and two covalent models are discussed on the basis of the structural data including Sn4(NtBu)3OAlMe3.


Sign in / Sign up

Export Citation Format

Share Document