Molten lithium nitrate-potassium nitrate eutectic: the reaction of chromium(II) chloride

1982 ◽  
Vol 35 (11) ◽  
pp. 2353 ◽  
Author(s):  
DH Kerridge ◽  
SA Tariq

The strong reducing agent chromium(II) chloride reacted rapidly in molten lithium nitrate-potassium nitrate, at or above the melting point of the eutectic, initially forming a dark-brown-black solution [probably containing chromium(III) and chromium(VI)] and gaseous nitrogen dioxide, but at 200�C giving a green precipitate (Cr2O3) and an orange solution of dichromate. Above 450�C, a further slow reaction converted both compounds into a yellow solution of chromate(VI) containing nitrite partly formed by thermal decomposition of the nitrate.

1964 ◽  
Vol 42 (8) ◽  
pp. 1984-1995 ◽  
Author(s):  
A. N. Campbell ◽  
D. F. Williams

The electrical conductance and its temperature dependence of molten lithium chlorate have been determined. Similar results have been obtained for lithium chlorate melts containing small quantities of methyl alcohol, propyl alcohol, lithium nitrate, lithium hydroxide, and water.The results obtained, taken in conjunction with the results of previous work, all indicate that the melt is complex. There is probably considerable association and this is especially evident slightly above the melting point: at temperatures in this region the temperature change of the properties of the lithium chlorate melt is greatest.The activation energy of conductance is approximately the same as the activation energy of viscous flow, for pure lithium chlorate melt and for mixtures of lithium chlorate with lithium nitrate. From this it appears that the melt constituents are not principally the simple ions, but that some form of cohesion exists between the simple constituents of the melt.The addition of water to the lithium chlorate melt causes the melt properties to alter considerably, especially the transport properties, viscosity and conductance. It is suggested that these changes may in part be due to a breakup of the structural entities of the pure melt, though the increase in electrical conductance cannot be completely explained in this way. A cryoscopic investigation seems to indicate that water is •not present as such in the melt.


Sign in / Sign up

Export Citation Format

Share Document