Studies of Some Cadmium(II) and Mercury(II) Complexes With Dicyclohexylphosphino-N-Phenylthioformamide, LH: Crystal and Molecular-Structures of [Cdl2(LH)]2, ([HgCl2(LH)]2.CH2Cl2) And HgCl2(LH)2

1986 ◽  
Vol 39 (4) ◽  
pp. 547 ◽  
Author(s):  
SW Cowan ◽  
D Dakternieks ◽  
RW Gable ◽  
BF Hoskins ◽  
CL Rolls ◽  
...  

The crystal and molecular structures of the title compounds, [CdI2(LH)]2, (1), [HgCl2(LH)]2.CH2Cl2(2), and HgCl2(LH)2(3)[where LH = dicyclohexylphosphino-N-phenyl-thioformamide,* (c-C6H11)2PC(S)N(H)Ph] have been determined by single-crystal X-ray diffraction techniques. Crystals of (1) are monoclinic, space group P21/n, a 13.051(2), b 10.183(1), c 18.106(1)Ǻ and β 101.55(8)° with Z 2; R and Rw were 0.047 and 0.044 respectively for 2320 unique, observed reflections. The unit cell contains two equivalent centrosymmetric, halogen-bridged cadmium dimers. Crystals of (2) are triclinic, space group Pī, with a 10.668(4), b 14.978(3), c 16.838(4)Ǻ, and α 111.80(2), β 101.03(2), γ 92.06(2)° with Z 2; R and Rw were 0.069 and 0.067 respectively for 3379 unique observed reflections. The structure shows two independent centrosymmetric halogen-bridged dimers within the unit cell. Crystals of (3) are monoclinic, space group C2/c, a 24.719(6), b 12.247(3), c 26.818(6) Ǻ, and β 94.62(2)° with Z 8; R and Rw were 0.075 and 0.071 respectively for 2698 unique, observed reflections. The structure shows the complex to be monomeric. In all three compounds the metal atom is in an approximately tetrahedral environment with the potentially multidentate ligand, LH, coordinating only through the phosphorus atom. The mercury compounds show a much larger deviation from ideal tetrahedral geometry than does the cadmium compound.

2021 ◽  
Vol 12 (2) ◽  
pp. 216-221
Author(s):  
Joana Hipolito ◽  
Luis Alves ◽  
Ana Martins

New Ti(IV), Zr(IV) and Al(III) salen-based complexes of formulae [(L)TiCl2], 2, [(L)ZrCl2], 3, and [(L){Al(CH2CH(CH3)2)2}2], 4, where L = meso-(R,S)-diphenylethylene-salen, were synthesized in high yields. [(L){Al(CH2CH(CH3)2)2}2] is a bimetallic complex that results from the reaction of H2L with either 1 or 2 equivalent of Al(CH2CH(CH3)2)3. The solid-state molecular structures of compounds 2 and 4·(C7H8) were obtained by single-crystal X-ray diffraction. Crystal data for C44H54Cl2N2O2Ti, (2a): monoclinic, space group C2/c (no. 15), a = 27.384(1) Å, b = 12.1436(8) Å, c = 28.773(2) Å, β = 112.644(2)°, V = 8830.6(9) Å3, Z = 8, μ(MoKα) = 0.350 mm-1, Dcalc = 1.146 g/cm3, 26647 reflections measured (5.204° ≤ 2Θ ≤ 50.7°), 8072 unique (Rint = 0.0967, Rsigma = 0.1241) which were used in all calculations. The final R1 was 0.0640 (I > 2σ(I)) and wR2 was 0.1907 (all data). Crystal data for C62H72Cl2N2O2Ti (2b): monoclinic, space group P21/c (no. 14), a = 19.606(1) Å, b = 12.793(1) Å, c = 23.189(2) Å, β = 105.710(4)°, V = 5599.0(7) Å3, Z = 4, μ(MoKα) = 0.291 mm-1, Dcalc = 1.182 g/cm3, 37593 reflections measured (3.65° ≤ 2Θ ≤ 50.928°), 10304 unique (Rint = 0.0866, Rsigma = 0.1032) which were used in all calculations. The final R1 was 0.0593 (I > 2σ(I)) and wR2 was 0.1501 (all data). Crystal data for C67H97Al2N2O2 (4·(C7H8)): triclinic, space group P-1 (no. 2), a = 10.0619(9) Å, b = 16.612(2) Å, c = 21.308(2) Å, α = 67.193(5)°, β = 78.157(6)°, γ = 77.576(5)°, V = 3176.8(6) Å3, Z = 2, μ(MoKα) = 0.088 mm-1, Dcalc = 1.063 g/cm3, 42107 reflections measured (5.382° ≤ 2Θ ≤ 51.624°), 12111 unique (Rint = 0.0624, Rsigma = 0.0706) which were used in all calculations. The final R1 was 0.0568 (I > 2σ(I)) and wR2 was 0.1611 (all data). The solid-state molecular structure of [(L){Al(CH2CH(CH3)2)2}2] reveals that both metal centres display a slightly distorted tetrahedral geometry bridged by the salen ligand. Both [(L)TiCl2] and [(L)ZrCl2] complexes display octahedral geometry with trans-chlorido ligands.


1990 ◽  
Vol 45 (8) ◽  
pp. 1167-1176 ◽  
Author(s):  
Alfons Möhlenkamp ◽  
Rainer Mattes

The reaction of NaReO4 with thiobenzoylhydrazine yields Re(NHNC(S)Ph)3- DMF (1). With ReOCl3(PPh3)2 thiobenzoylhydrazine reacts to give Re(NHNC(S)Ph)3 · OPPh3 (2) and in the presence of HCl to yield [Re(NHNC(S)Ph)(NHNHC(S)Ph),]Cl · 1/3 C2H5OH -1 /3 H2O (3). The structures of 1-3 have been determined. 1: monoclinic, space group P2,/c, a = 1150.1(9), b = 2050.0(9), c = 1181.0(8) pm, β = 109.62(5)°, Z = 4, 2980 reflections, R = 0.055; 2: trigonal, space group R 3, a = 1399.8(1), c = 1684.0(1) pm, Z = 3, 1419 reflections, R = 0.033; 3: monoclinic, space group P2,/c, a = 1446.8(3), b = 3220.7(5), c = 1727.1(4) pm, β = 108.42(2)°, Z = 12, 6112 reflections, R = 0.062. In 1 and 2 three N,S-chelating ligands NHNR (R = C(S)Ph) are coordinated to the central rhenium atom. The ligand structure is intermediate between a diazene and a hydrazido(2–) structure. In 3 each rhenium atom is coordinated by one NHNR and two NHNHR ligands, all N,S-chelating. The latter can be considered as protonated diazene ligands. The unit cell contains three isomeric coordination polyhedra.


1983 ◽  
Vol 38 (9) ◽  
pp. 1054-1061 ◽  
Author(s):  
M. Veith ◽  
O. Recktenwald

Abstract Crystals of Sn4(NtBu)4 (1) are monoclinic, space group P21/c, with cell constants a = 1038.9(4), b = 1468.3(5), c = 1698.8(5) pm, β = 91.6(1)° and Z = 4, while those of Sn4(NtBu)3O (2) are triclinic, space group P 1̄, with dimensions a = 1293.0(5), b = 1027.1(5), c = 1716.7(9) pm, α = 90.9(1), β = 102.5(1), γ = 107.0(1)° and Z = 4. The molecules 1 are held together by van-der-Waals forces, whereas two molecules 2 interact in the crystal by weak 0→Sn donor bonds (290-332 pm) forming dimers. The outstanding structural elements of 1 and 2 are the Sn4N4 and Sn4N3O polyhedra, which can be described by two interpenetrating tetrahedra of tin atoms and of nitrogen or nitrogen and oxygen atoms forming a distorted cube, which approaches 4̄3 m symmetry in the case of 1 and 3m for 2. Characteristic distances are in 1: Sn-N 220.2 pm, in 2: Sn-N 221.3 pm and Sn-O 213.2 pm. An almost ionic bonding model and two covalent models are discussed on the basis of the structural data including Sn4(NtBu)3OAlMe3.


1987 ◽  
Vol 40 (5) ◽  
pp. 907 ◽  
Author(s):  
GB Deacon ◽  
BM Gatehouse ◽  
SN Platts ◽  
DL Wilkinson

The crystal structures of tris (η5-cyclopentadienyl) (pyridine) samarium(III), monoclinic, space group P21/c, a 10.906(4), b 8.636(2), c 17.825(3) �, β 96.44(2)�, Z 4, R 0.027 and Rw 0.032 for 3619 'observed' reflections, and tris (η5-cyclopentadienyl)(pyridine)neodymium(III), monoclinic, space group P21 / c, a 14-206(4), b 8.619(2), c 15.190(7) �, β 107.38(2)�, Z 4, R 0.035 and R, 0.039 for 2677 'observed' reflections have been determined. Both compounds have pseudotetrahedral geometry with a coordination number of 10 for the lanthanoid metal but there is a difference in the coordination of pyridine and in unit cell packing between the two structures.


Author(s):  
G. D. Nigam ◽  
G. Mattern ◽  
R. Fröhlich

AbstractThe crystal and molecular structures of 1-(m-nitrophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (I) and 1-(p-chlorophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (II) have been determined by X-ray diffraction methods. (I) crystallizes in the monoclinic space group


1988 ◽  
Vol 43 (7) ◽  
pp. 830-838 ◽  
Author(s):  
Hans-Friedrich Klein ◽  
Michael Gaß ◽  
Udo Koch ◽  
Brigitte Eisenmann ◽  
Herbert Schäfer

Low-valent trimethylphosphine cobalt compounds are oxidized by tellurium, selenium, or sulfur to give the title compounds. Several high-yield syntheses are described. The crystal and molecular structures of (Me3P)3CoX3Co(PMe3)3 (1: X = Te. 2: X = Se. 3: X = S) have been determined by single crystal X-ray diffraction. Complex 1 crystallizes in the monoclinic space group P21/n; a = 933.8(6) pm. b = 1488.3(6) pm. c = 1257.9(6) pm. β = 92.82(6)°. Z = 2. Complex 2 crystallizes in the triclinic space group P1, a = 1785.6(7) pm. b = 1599.7(7) pm. c = 928.9(5) pm. α = 87.8(1)°. β = 85.2(1)°. γ = 73.3(1)°. Z = 3. Complex 3 crystallizes in the monoclinic space group P21/c; a = 952.6(5) pm. b = 1868.7(8) pm. c - 1893.1(8) pm. β = 90.19(6)°. Z = 4. All three structures contain centrosymmetric molecules with planar Co2X2 rings. In solution dissociation of phosphine ligands occurs followed by slow decomposition to produce [(Me3P)2Co(PMe2)]2 among other products. 1 reacts with carbon monoxide to afford a ditelluride [(Me3P)2(CO)2Co]2Te2. but no corresponding derivatives of 2 or 3 were obtained.


Author(s):  
G. Dewald ◽  
M. Hanack ◽  
E.-M. Peters ◽  
L. Walz

AbstractThe crystal and molecular structures of dimorphic 10,10′-(1,4-phenylene-dimethylidene)-bis-9,10-H-anthracenone (1) have been determined using X-ray diffraction data. The compound crystallizes either in the monoclinic space groupSince all non-hydrogen atoms are of pure


1985 ◽  
Vol 40 (10) ◽  
pp. 1293-1300 ◽  
Author(s):  
H. Schmidbaur ◽  
Chr. Zybill ◽  
D. Neugebauer ◽  
G. Müller

Hexaphenylcarbodiphosphorane Ph3P=C=PPh3 (1) forms deeply coloured, crystalline 1:1 ad- ducts with elemental sulfur, selenium and tellurium (2, 3 and 7, respectively). A superior method of synthesis for 7 is the reaction of Na2Te with (Ph3P)2CCl⊕Cl⊖. All three compounds are thermally unstable and decompose at or below room temperature. A selenium adduct 5 was also obtained with Me3P = C = PPh, (4). The compounds 2 and 3 can be alkylated at the chalkogen atoms using MeOSO2F or PhCH2Cl. Oxydation of 3 leads to Se - Se coupling.Addition of elemental iodine to 1 in molar ratios 1:1. 2:3 and 1:2 affords salt-like products composed of the (Ph2P)2Cl⊕ cation associated with I⊖ and/or I3⊖ anions (8a-c).The crystal and molecular structures of 3 and 8b have been determined by single crystal X-ray diffraction. 3′, containing one half equivalent of disordered tetrahydrofuran, crystallizes in the monoclinic space group P21/n (a = 10.848(6), b = 17.433(8). c = 16.848(9) Å, β = 91.51(5)°. V = 3185.07 Å3, ϱx = 1359 gcm-3, Z = 4). Based on 3488 structure factors, the final R value was 0.103. The selenium is attached to the ylidic carbon atom without major changes of the Ph3P=C=PPh3 skeleton (C - Se = 1.99 Å). 8b crystallizes in the triclinic space group P1̄ (a = 9.935(2). b = 11.507(2), c = 16.646(3) Å, α = 90.91(1), β = 112.00(1), γ = 96.60(1)°, V = 1749.15 A3, ϱx = 1.741 gcm-3, Z = 2). Refinement of 382 parameters on 5096 structure factors converged at R = 0.043. The molecular structure shows close similarities to the selenium adduct 3 (C-I = 2.12 Å).


1993 ◽  
Vol 48 (12) ◽  
pp. 1821-1827 ◽  
Author(s):  
Ilpo Mutikainen ◽  
Hannu Elo ◽  
Pirkko Tilus

The first study on the crystal and molecular structures of basic forms of bis(amidinohydrazones) is reported. The structures of the free base and the monohydrochloride salt of the antileukemic agent glyoxal bis(amidinohydrazone) (GBG) were determined by single crystal X-ray diffraction and were refined to R-values of 0.038 and 0.040, respectively. These structures are of special interest because recent results indicate that, in contrast to previous assumptions, the free base may be the actual antileukemic form of bis(amidinohydrazones) and that the monocation form is the predominant species of antileukemic bis(amidinohydrazones) at physiological conditions. In the crystals of the free base as well as in those of the monohydrochloride salt, GBG was found to exist solely in the all-trans configuration of the chain and to consist of one of the three possible geometrical isomers only. In the solid state, GBG free base consists solely of the endiamine tautomer instead of the 'classical’ carboximidamide tautomer, as does also the non-protonated part of GBG monocation in the monohydrochloride salt. Proton NMR measurements indicated that the free base consists of the endiamine tautomer also in dimethyl sulfoxide solution. In the solid state, both of the compounds studied consist of stacks of planes. In the case of the free base, the stacks are crisscross to each other. The distance between the mean planes of the molecules or the monocations is approximately 3.5 Å. The crystals of the monohydrochloride salt contain one molecule of water per each GBG monocation. In both compounds studied, the molecules in the crystals are held together by very extensive hydrogen bond networks and by the interaction of delocalized π-electrons. The crystal of C4H10N8 is monoclinic, space group C2/c with a = 15.874(6), b = 6.972(4), c = 7.8l3(5)Å, β = 90.34(4)° and Z = 4. The crystal of C4H13N8OC1 is monoclinic, space group P21/n with α = 7.010(3), b = 22.307(9), c = 7.028(3)Å, β = 66.33(3)° and Ζ = 4.


1984 ◽  
Vol 39 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Franz Dirschl ◽  
Heinrich Nöth

The crystal and molecular structures of two trans-1,2,4,5-tetraza-diphospha-3,6-cyclohexane- 3,6-disulfides, 2 and 3, have been determined by X-ray diffraction methods. The 3,6-diphenyl- 1,2,4,5-tetramethyl-derivative 2 crystallizes in the monoclinic system, space group C He. Its P2N 4 heterocycle adopts a twist conformation. In contrast, the hexamethyl derivative 3 is triclinic, space group P1̅, and its ring shows chair conformation. Torsion angles in these two compounds and similar ones reveal less interaction between lone pairs of electrons on adjacent N-atoms in the chair conformation but stronger interaction of those bound to phosphorus. It is suggested that the latter interaction is responsible for the larger N -P -N bond angle (107°) as compared to the smaller one (101°) in the P2N4 rings present in twist conformation.


Sign in / Sign up

Export Citation Format

Share Document