The Preparation and Crystal Structure of the Bismuth(III) Catecholate Complex Adduct (NH4)2[Bi2(C6H4O2)4].(C6H6O2)2.2H2O

1994 ◽  
Vol 47 (7) ◽  
pp. 1413 ◽  
Author(s):  
G Smith ◽  
AN Reddy ◽  
KA Byriel ◽  
CHL Kennard

(NH4)2[Bi2(C6H4O2)4].(C6H6O2)2.2H2O, a bismuth(III)-catechol complex adduct, has been prepared and its structure determined by X-ray diffraction methods. The complex anion is a centrosymmetric dimer comprising two five-coordinate [ bis ( catecholato (2-)) bismuthate (III)] centres [Bi-O, 2.177(4), 2.222(4) Ǻ and 2.150(3), 2.322(4)Ǻ], bridged by one of the catechol oxygens [Bi-O, 2.653(3)Ǻ]. In addition, the structure is stabilized by hydrogen bonding involving the ammonium ions, the lattice waters and the two adduct catechol molecules.

Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


1979 ◽  
Vol 57 (1) ◽  
pp. 57-61 ◽  
Author(s):  
R. Melanson ◽  
F. D. Rochon

The crystal structure of [Pt(diethylenetriamine)(guanosine)](ClO4)2 has been determined by X-ray diffraction. The crystals are orthorhombic, space group P212121, with a = 12.486(6), b = 13.444(7), c = 14.678(11) Å, and Z = 4. The structure was refined by block-diagonal least-squares analysis to a conventional R factor of 0.050 and a weighted Rw = 0.045.The coordination around the platinum atom is square planar. Guanosine is bonded to platinum through N(7). The purine planar ring makes an angle of 62.7° with the platinum coordination plane. The structure is stabilized by hydrogen bonding.


2011 ◽  
Vol 75 (6) ◽  
pp. 2823-2832
Author(s):  
P. Elliott ◽  
A. Pring

AbstractThe crystal structure of the manganese phosphate mineral gatehouseite, ideally Mn52+(PO4)2(OH)4, space group P212121, a = 17.9733(18), b = 5.6916(11), c = 9.130(4) Å, V= 933.9(4) Å3, Z = 4, has been solved by direct methods and refined from single-crystal X-ray diffraction data (T = 293 K) to an R index of 3.76%. Gatehouseite is isostructural with arsenoclasite and with synthetic Mn52+(PO4)2(OH)4. The structure contains five octahedrally coordinated Mn sites, occupied by Mn plus very minor Mg with observed <Mn—O> distances from 2.163 to 2.239 Å. Two tetrahedrally coordinated P sites, occupied by P, Si and As, have <P—O> distances of 1.559 and 1.558 Å. The structure comprises two types of building unit. A strip of edge-sharing Mn(O,OH)6 octahedra, alternately one and two octahedra wide, extends along [010]. Chains of edge- and corner-shared Mn(O,OH)6 octahedra coupled by PO4 tetrahedra extend along [010]. By sharing octahedron and tetrahedron corners, these two units form a dense three-dimensional framework, which is further strengthened by weak hydrogen bonding. Chemical analyses by electron microprobe gave a unit formula of (Mn4.99Mg0.02)Σ5.01(P1.76Si0.07(As0.07)Σ2.03O8(OH)3.97.


2013 ◽  
Vol 834-836 ◽  
pp. 515-518
Author(s):  
Hai Xing Liu ◽  
Qing Liu ◽  
Ting Ting Huang ◽  
Yang Xu ◽  
Lin Tong Wang ◽  
...  

A novel praseodymium complex C5H13O11Pr has been synthesized from hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Pr1 atom is nine coordinated by nine O atoms. The crystal packing is stabilized by O-H...O hydrogen bonding interactions.


1997 ◽  
Vol 52 (8) ◽  
pp. 978-980 ◽  
Author(s):  
M Höhling ◽  
W Preetz

The structure of tetraphenylarsonium pentachlorocarbonylosmate(IV), (Ph4As)[OsCl5(CO)], the first example of a halogenocarbonyl complex with osmium in the oxidation state +IV, has been determined at 208 K by single crystal X-ray diffraction: tetragonal, space group P4/n with a = 12.821 , c = 8.084 Å, Z = 2. There are short intermolecular contacts between neighbouring anions along the tetragonal axis c and unusually large displacement ellipsoids of the carbonyl group and the four equatorial Cl ligands arising from a positional disorder of the complex anion. By analogy with a variety of reported structures of the (Ph4As)[RuNCl4] structure type this is attributed to the close packing of the cation sublattice. Compared to other monocarbonylosmates the Os-C bond of 1.94(2) Å is extraordinaryly long while the bond between Os and the trans coordinated Cl ligand of 2.286(3) Å is rather short.


2012 ◽  
Vol 554-556 ◽  
pp. 792-795
Author(s):  
Hai Xing Liu ◽  
Jing Wang ◽  
Fang Fang Jian ◽  
Hui Juan Yue ◽  
Guang Zeng ◽  
...  

A new Eu complex [Eu (C3O9H6)] ·2(H2O) has been synthesized from a hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Eu atom is coordinated by eight O atoms. The molecular is antisymmetric structure by the C3-C3 axis. It is striking that the structure of the complex exhibits extensive O-H…O hydrogen-bonding interactions.


2018 ◽  
Vol 73 (5) ◽  
pp. 281-288
Author(s):  
Qing Zhao ◽  
Ying-Qi Pan ◽  
Xiao-Yan Li ◽  
Han Zhang ◽  
Wen-Kui Dong

AbstractA discrete heterotrinuclear complex [{Ni2LDy(OAc)3(CH3OH)}2] · 2CH3OH · 3CH2Cl2, with a naphthalenediol-based acyclic bis(salamo) ligand H4L, has been synthesized and structurally characterized using elemental analyses, IR, UV/Vis and fluorescence spectra and single crystal X-ray diffraction. The crystal structure shows two crystallographically independent but chemically identical molecules (molecules I and II). All the Ni(II) atoms are hexa-coordinated with slightly distorted octahedral geometries. The central Dy atoms are nona-coordinated with slightly distorted tricapped trigonal prism geometries. An infinite 3D supramolecular structure is formed via intermolecular hydrogen bonding and C–H…π interactions.


2013 ◽  
Vol 785-786 ◽  
pp. 424-427
Author(s):  
Hai Xing Liu ◽  
Qing Hua Zhang ◽  
Zhang Xue Yu ◽  
Quan Hua Fan ◽  
Ting Ting Huang ◽  
...  

The Y complex C4H10O10Y has been synthesized from a hydrothermal reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. The Y atom is coordinated by nine O atoms. The molecular structure stabilized by the O-H…O hydrogen-bonding interactions.


1998 ◽  
Vol 53 (10) ◽  
pp. 1144-1148 ◽  
Author(s):  
Frank Wendland ◽  
Christian Näther ◽  
Michael Schur ◽  
Wolfgang Bensch

AbstractThe title compound has been synthesized under solvothermal conditions by the reaction of elemental chromium, antimony and selenium in a solution of 40% 1,2-ethanediamine (en) in methanol. The crystal structure consists of tetrahedral SbSe43- anions which are connected by monoprotonated 1,2-ethanediamine (enH+) cations via N-H--Se hydrogen bonding. The enH+ cations are joined via strong N-H -N hydrogen bonds between the ammonium hydrogen and the amino nitrogen atom forming four distinct chains, each built up of three crystallographically independent enH+ cations. Two of these chains are running parallel to [100], the other two are parallel to [010]. Based on this arrangement different centrosymmetric or non-centrosymmetric hydrogen bonding patterns are possible, but only in one chain the sequence of NH2 and NH3+ groups was determined by X-ray diffraction


Sign in / Sign up

Export Citation Format

Share Document