bonding patterns
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 37)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Author(s):  
John E. McGrady ◽  
Florian Weigend ◽  
Stefanie Dehnen

Despite many different views on the bonding in endohedral Zintl clusters, the relationship between their valence electron count and their structure and bonding patterns is much more uniform than previously anticipated, as highlighted in this article.


2021 ◽  
Vol 22 (23) ◽  
pp. 12679
Author(s):  
Chenming Li ◽  
Philipp Hilgeroth ◽  
Nazmul Hasan ◽  
Dieter Ströhl ◽  
Jörg Kressler ◽  
...  

Carbonyl-centered hydrogen bonds with various strength and geometries are often exploited in materials to embed dynamic and adaptive properties, with the use of thiocarbonyl groups as hydrogen-bonding acceptors remaining only scarcely investigated. We herein report a comparative study of C2=O and C2=S barbiturates in view of their differing hydrogen bonds, using the 5,5-disubstituted barbiturate B and the thiobarbiturate TB as model compounds. Owing to the different hydrogen-bonding strength and geometries of C2=O vs. C2=S, we postulate the formation of different hydrogen-bonding patterns in C2=S in comparison to the C2=O in conventional barbiturates. To study differences in their association in solution, we conducted concentration- and temperature-dependent NMR experiments to compare their association constants, Gibbs free energy of association ∆Gassn., and the coalescence behavior of the N-H‧‧‧S=C bonded assemblies. In Langmuir films, the introduction of C2=S suppressed 2D crystallization when comparing B and TB using Brewster angle microscopy, also revealing a significant deviation in morphology. When embedded into a hydrophobic polymer such as polyisobutylene, a largely different rheological behavior was observed for the barbiturate-bearing PB compared to the thiobarbiturate-bearing PTB polymers, indicative of a stronger hydrogen bonding in the thioanalogue PTB. We therefore prove that H-bonds, when affixed to a polymer, here the thiobarbiturate moieties in PTB, can reinforce the nonpolar PIB matrix even better, thus indicating the formation of stronger H-bonds among the thiobarbiturates in polymers in contrast to the effects observed in solution.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 89
Author(s):  
Maya Khatun ◽  
Saikat Roy ◽  
Sandip Giri ◽  
Sasanka Sankhar Reddy CH ◽  
Anakuthil Anoop ◽  
...  

We have explored the chemical space of BAl4Mg−/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm implemented in the Python program for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points. The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable, except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO, AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg−/0/+ to understand the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in these systems. Compared to the carbon counter-part, CAl4Mg−, here the anion (BAl4Mg−) obeys the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between BAl4−/0/+ and Mg is ionic in all these six systems.


Author(s):  
Andrzej Nowok ◽  
Mateusz Dulski ◽  
Joanna Grelska ◽  
Anna Z. Szeremeta ◽  
Karolina Jurkiewicz ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Sun ◽  
Miguel A. L. Marques ◽  
Silvana Botti

AbstractA major issue that prevents a full understanding of heterogeneous materials is the lack of systematic first-principles methods to consistently predict energetics and electronic properties of reconstructed interfaces. In this work we address this problem with an efficient and accurate computational scheme. We extend the minima-hopping method implementing constraints crafted for two-dimensional atomic relaxation and enabling variations of the atomic density close to the interface. A combination of density-functional and accurate density-functional tight-binding calculations supply energy and forces to structure prediction. We demonstrate the power of this method by applying it to extract structure-property relations for a large and varied family of symmetric and asymmetric tilt boundaries in polycrystalline silicon. We find a rich polymorphism in the interface reconstructions, with recurring bonding patterns that we classify in increasing energetic order. Finally, a clear relation between bonding patterns and electrically active grain boundary states is unveiled and discussed.


RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27193-27198
Author(s):  
Xiao-Qin Lu ◽  
Hai-Gang Lu ◽  
Si-Dian Li

First-principle theory calculations reveal record coordination numbers of CN = 13 in D13h La©C13+, CN = 12 in C2v Y©B6C6+, and CN = 11 in C2v Sc©B5C6 in planar species, effectively enriching the chemical structures and bonding patterns of planar hypercoordinated complexes.


2020 ◽  
Vol 76 (11) ◽  
pp. 1799-1799
Author(s):  
Haruki Sugiyama

In the paper by Sugiyama [Acta Cryst. (2020), E76, 742–746], there is an error in the chemical names of the title compounds.


Sign in / Sign up

Export Citation Format

Share Document