The influence of water on wheat yield, plant nitrogen uptake and soil mineral nitrogen concentration

1965 ◽  
Vol 5 (18) ◽  
pp. 310 ◽  
Author(s):  
RR Storrier

Water, in addition to the natural rainfall, was applied at five different stages of crop development to Heron wheat growing on a highly fertile soil. Dry matter yield, grain yield, the grain yield parameters (ear number, grain number per ear, weight per grain), and nitrogen content were measured. Changes in soil mineral nitrogen content as a consequence of water application and subsequent plant uptake were also studied. A single application of water at jointing, and treatments involving watering at all pre-anthesis stages during a period of moisture stress, increased straw and grain yields and floret development, as reflected in grain number per ear. Water applied after anthesis controlled to some degree the loss of dry matter and plant nitrogen exhibited by a maturing wheat crop. The number of tillers produced, the number surviving, or the number of ears were not increased by adding water at any stage of development. The increased grain yield that followed late additions of water was due to increases in the weight per grain. The addition of water during the jointing to milk stage increased the uptake of mineral nitrogen by the crop, to a depth of 30 inches. No increase in the mineralization of organic nitrogen was detected by soil analysis, but an approximate balance sheet indicated that mineralization, which was occurring during the growing season, was further stimulated by watering.

1985 ◽  
Vol 25 (3) ◽  
pp. 603 ◽  
Author(s):  
A Petch ◽  
RW Smith

Wheat was grown in a series of 1:1 rotation cycles with sweet lupins over 8 years on three sites in Western Australia. Grain yield of wheat was the main test used to compare five lupin management treatments with a control treatment, 'no-lupins'. The lupins were cut as for silage, cut as for hay, or harvested as mature grain, the stubble being burnt or removed in summer, or turned into the soil the next autumn. Nitrogen taken up in the lupins and in the wheat was measured, as well as soil mineral nitrogen in the top 10 cm in the final year. Lupin yield and nitrogen content within any year were similar over all treatments. As much nitrogen was removed in hay and silage as in mature lupins, but wheat yielded most grain after the 'silage' and 'hay' treatments, and least after 'no-lupins' or after the 'remove' and 'turn-in' stubble treatments. Nitrogen uptakes in young wheat plants point to treatment effects due to differences in nitrogen availability, but the treatments also caused different weed populations which at least partially affected wheat yields. Herbicide control of encroaching weeds in the lupins raised soil nitrate levels the following summer and increased subsequent wheat yields.


1988 ◽  
Vol 68 (2) ◽  
pp. 311-322 ◽  
Author(s):  
PATRICK M. McMULLAN ◽  
PETER B. E. McVETTY ◽  
AILEEN A. URQUHART

Dry matter and nitrogen (nitrate and reduced) accumulation and redistribution in four different spring wheat (Triticum aestivum L.) genotypes grown at field density were studied on a plant part and whole plant basis over the growing season for 2 yr. The four cultivars displayed significant differences in plant part and total plant dry matter, harvest index, nitrogen content, nitrogen concentration, nitrogen harvest index and nitrogen translocated values at most sample dates in both years. Grain yield was highly correlated with dry matter accumulation (r = 0.88**), while grain nitrogen content was highly correlated with plant nitrogen content (r = 0.95**). Nitrogen harvest index and plant nitrogen content were correlated at anthesis (r = 0.61**), while, as a consequence of this, the amount of nitrogen translocated was highly correlated with plant nitrogen content at anthesis (r = 0.87**). Nitrogen harvest index and harvest index were highly correlated (r = 0.83**), indicating that they may be related processes. Since plant dry matter and plant nitrogen content were not significantly correlated, it should be possible to select simultaneously for these traits to effect grain yield and grain nitrogen content increases on a per-plant basis. Further research will have to be done to determine how these changes will relate to grain nitrogen concentrations and grain yield per unit area.Key words: Wheat, dry matter, nitrogen, yield, protein, Triticum aestivum L.


1984 ◽  
Vol 24 (127) ◽  
pp. 595 ◽  
Author(s):  
TG Reeves ◽  
A Ellington ◽  
HD Brooke

Three experiments, begun in successive years, were conducted between 1974 and 1979 in north-eastern Victoria to investigate the effects of rotating wheat (cv. Olympic) and 'sweet' lupins (Lupinus angustifolius cv. Uniharvest) on crop yields, soil fertility and crop diseases. The grain yield of continuous wheat was 2.58 t/ha and of continuous lupins 0.66 t/ha (P<0.05). Wheat, grown after a lupin crop, yielded 750 kg/ha more than wheat after wheat, and a second wheat crop, after lupins, yielded 420 kg/ha more than a third successive wheat crop. Lupins, grown after wheat, yielded 50-165% more than lupins after lupins. Grain nitrogen of wheat was significantly increased after lupins (P<0.01). Differences in soil mineral nitrogen were apparent ten weeks after sowing, with mean nitrogen levels of 37 and 55 kg/ha under wheat and lupins, respectively. Soil mineral nitrogen (0-20 cm) was consistently greater after lupins than after wheat (P<0.01) when measured just before seeding the succeeding crop. Overall, mean accretion of mineral nitrogen under lupins was 4 1 kg/ha.year. Residual nitrogen from lupins, after one succeeding wheat crop had been grown, was also evident (mean 23 kg/ha). Crop rotation influenced the incidence of crop diseases in wheat and lupins. Lupins after lupins suffered severely from brown leaf spot (Pleiochaeta setosa), up to 63% of plants being infected compared with only 18% after wheat. Disease incidence (mainly Gaeumannomyces graminis) in wheat increased from less than 1% in the first year of cropping, to 36% infection in year 3. When wheat was grown after lupins, disease incidence was negligible.


1988 ◽  
Vol 68 (4) ◽  
pp. 983-993 ◽  
Author(s):  
PATRICK M. McMULLAN ◽  
PETER B. E. McVETTY ◽  
AILEEN A. URQUHART

Dry matter and nitrogen (nitrate and reduced) accumulation and redistribution in four different spring oat (Avena sativa L.) genotypes grown at commercial field density were studied on a plant part and whole plant basis over the growing season for 2 yr. The four cultivars displayed significant differences in plant part and total plant dry matter, harvest index, nitrogen content, nitrogen concentration, nitrogen harvest index, and nitrogen translocated values at most sample dates in both years. Grain yield per plant was correlated with dry matter accumulation (r = 0.80*). Harvest index was highly correlated with grain yield per plant (r = 0.88**). Grain nitrogen content was highly correlated with plant nitrogen content (r = 0.94**). Nitrogen harvest index and harvest index were highly correlated (r = 0.86**), indicating that they may be related processes. Since plant dry matter and plant nitrogen content were not significantly correlated, it should be possible to select simultaneously for these traits to effect grain yield and grain nitrogen content increases on a per plant basis. Further research will have to be done to determine how these changes will relate to grain nitrogen concentrations and grain yield per unit area.Key words: Avena sativa L., oat, dry matter, nitrogen, yield, protein


2009 ◽  
Vol 31 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Branko Kramberger ◽  
Anastazija Gselman ◽  
Marjan Janzekovic ◽  
Mitja Kaligaric ◽  
Brigita Bracko

1988 ◽  
Vol 28 (2) ◽  
pp. 215
Author(s):  
AC Taylor ◽  
WJ Lill ◽  
AA McNeill

Dry matter and nitrogen uptake of wheat tops at flowering, dry matter and nitrogen of wheat grain at maturity, and soil mineral nitrogen (0-90 cm) at sowing and flowering, were measured at 68 sites (1 experiment per site in 5 Shires) in southern New South Wales to test the hypotheses that: (i) mineral nitrogen below 30 cm would improve the prediction of wheat yields, (ii) soil mineral nitrogen would be better indicated by wheat yields at flowering than those at maturity, and (iii) soil mineral nitrogen would be better indicated by nitrogen uptake by wheat than by dry matter yields. Mineral nitrogen concentrations in soil at depths greater than 30 cm did not improve the prediction of wheat attributes, but hypotheses (ii) and (iii) were validated. Curvilinear regressions, significant (P< 0.05) on 2 occasions, were not important in this study. The best regression of wheat dry matter at flowering against soil mineral nitrogen at sowing was a single straight line, but the best models for the other 3 wheat variables were all bilinear. The best of the latter related the uptake of nitrogen by wheat at flowering to mineral nitrogen in the soil at sowing as follows: FNUH = (31.6 � 5.9) + (0.892 � 0.110) TMNS30 and FNUL = (9.7 � 7.3) + (0.892 � 0.110) TMNS30 where FNUH is nitrogen uptake by wheat at flowering (kg/ha) in 1960, 1964 and 1966 (when Shire wheat yields were above the Shire's long term average), FNUL is nitrogen uptake by wheat at flowering (kg/ha) in 1961, 1965 and 1974 (when Shire wheat yields were below the Shire's long term average), and TMNS30 is total mineral nitrogen (0-30 cm) (kg/ha) at sowing.


1965 ◽  
Vol 5 (18) ◽  
pp. 317 ◽  
Author(s):  
RR Storrier

Ammonium sulphate was added at rates up to 150 lb nitrogen an acre to a soil containing 149 lb mineral nitrogen per acre-18 Inches at sowing, and the seasonal distribution of mineral nitrogen in the soil, nitrogen uptake, and yield of wheat was measured in a better than average season. Some of the applied fertilizer, at all rates of application, was taken up by the crop and resulted in increased dry matter yield and plant nitrogen content at jointing. However, at harvest, total dry matter and grain yield were depressed at all levels of fertilizer application. Grain yield was depressed from 40.5 to 30.5 bushels an acre with the addition of 150 lb nitrogen an acre.Yield potential, as represented by tiller production and spikelets per ear, was increased by fertilizer application, but ear number, grains per ear, and weight per grain, were depressed. Grain number per ear was the principle component of yield under the experimental conditions. Moisture stress and competition for light were responsible for an increase in tiller mortality, which resulted in the depression in ear number with increasing nitrogen supply. Inter-tiller competition for available moisture during the pre-anthesis period caused a decrease in grain number per ear, from 19.3 in the control to 16.6 at the maximum fertilizer rate. It is suggested that inter-tiller competition for available moisture during the pre-anthesis period is an important factor in determining potential grain yield in wheat grown on high fertility soils in southern New South Wales.


Sign in / Sign up

Export Citation Format

Share Document