Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng

2003 ◽  
Vol 30 (8) ◽  
pp. 901 ◽  
Author(s):  
Xiangyang Hu ◽  
Steven J. Neill ◽  
Weiming Cai ◽  
Zhangcheng Tang

The elicitor oligogalacturonic acid (OGA) stimulated nitric oxide (NO) accumulation in the growth medium of ginseng suspension cultures and induced increased nitric oxide synthase (NOS) activity in ginseng cells. OGA also stimulated accumulation of saponin, transcription of genes encoding squalene synthase (sqs) and squalene epoxidase (sqe), two early enzymes of saponin synthesis, and the accumulation of β-amyrin synthase protein (β-AS). Saponin accumulation, sqs and sqe gene expression, and increases in β-AS content were also induced by exposure to NO via the NO donor sodium nitroprusside (SNP). Inhibitors of mammalian nitric oxide synthase reduced both OGA-induced NO accumulation and NOS activity, suggesting that OGA-induced NO production occurs via a NOS-like enzyme. OGA-induced accumulation of β-AS and saponin, and transcription of sqs and sqe, were suppressed by treatments that removed NO or inhibited its production, indicating a role for NO in mediating OGA effects on these defence responses. NO accumulation and increased NOS activity were inhibited by calcium channel inhibitors and a protein kinase inhibitor, but not by a protein phosphatase inhibitor, indicating the requirement for calcium and protein phosphorylation during OGA-induced NO production. Saponin production and transcription, and accumulation of saponin biosynthetic genes and enzymes were also suppressed by these treatments, as well as by the protein phosphatase inhibitor okadaic acid.

1997 ◽  
Vol 322 (2) ◽  
pp. 609-613 ◽  
Author(s):  
Song Kyu PARK ◽  
Hsin Lee LIN ◽  
Sean MURPHY

Treatment of astroglial cells with interleukin 1β and interferon γ transcriptionally activates the nitric oxide synthase (NOS)-2 gene. The duration of mRNA expression is brief because of transcript instability. In addition, NO donors reduce the expression of NOS-2 mRNA dramatically by reducing the rate of transcription. In this study we observed that the NO donor, spermine NONOate did not inhibit the activation and translocation of NF-κB, a key transcription factor in the induction of NOS-2, but inhibited formation of the NF-κB–DNA complex. This effect was reversed by methaemoglobin (acting as an NO trap) and by the reducing agent dithiothreitol. Formation of the interferon-regulatory factor–DNA complex was unaffected by NO. These results suggest that NO can modulate its own production by interfering with NF-κB interaction with the promoter region of the NOS gene, a negative feedback effect that may be important for limiting NO production in vivo.


2018 ◽  
Author(s):  
Cao Xiaochuang ◽  
Zhu Chunquan ◽  
Zhong Chu ◽  
Zhang Junhua ◽  
Zhu Lianfeng ◽  
...  

AbstractAmmonium (NH4+) can enhance rice drought tolerance in comparison to nitrate (NO3-). The mechanism underpinning this relationship was investigated based on the time-dependent nitric oxide (NO) production and its protective role in oxidative stress of NH4+-/NO3--supplied rice under drought. An early burst of NO was induced by drought 3h after root NH4+ treatment but not after NO3- treatment. Root oxidative damage induced by drought was significantly higher in NO3- than in NH4+-treatment due to its reactive oxygen species accumulation. Inducing NO production by applying NO donor 3h after NO3- treatment alleviated the oxidative damage, while inhibiting the early NO burst increased root oxidative damage in NH4+ treatment. Application of nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) completely suppressed NO synthesis in roots 3h after NH4+ treatment and aggravated drought-induced oxidative damage, indicating the aggravation of oxidative damage might have resulted from changes in NOS-mediated early NO burst. Drought also increased root antioxidant enzymes activities, which were further induced by NO donor but repressed by NO scavenger and NOS inhibitor in NH4+-treated roots. Thus, the NOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by drought by enhancing antioxidant defenses in NH4+-supplied rice roots.HighlightNOS-mediated early NO burst plays an important role in alleviating oxidative damage induced by water stress, by enhancing the antioxidant defenses in roots supplemented with NH4+


2013 ◽  
Vol 304 (1) ◽  
pp. C78-C88 ◽  
Author(s):  
Jung-A. Han ◽  
Eun Yeoung Seo ◽  
Hae Jin Kim ◽  
Su Jung Park ◽  
Hae Young Yoo ◽  
...  

In contrast to the conventional belief that systemic arteries dilate under hypoxia, we found that α-adrenergic contraction of rat deep femoral artery (DFA) is largely augmented by hypoxia (HVCDFA) while hypoxia (3% Po2) alone had no effect. HVCDFA was consistently observed in both endothelium-intact and -denuded vessels with partial pretone by phenylephrine (PhE) or by other conditions (e.g., K+ channel blocker). Patch-clamp study showed no change in the membrane conductance of DFA myocytes by hypoxia. The RhoA-kinase inhibitor Y27632 attenuated HVCDFA. The nitric oxide synthase inhibitor [nitro-l-arginine methyl ester (l-NAME)] and soluble guanylate cyclase inhibitor [oxadiazole quinoxalin (ODQ)] strongly augmented the PhE-pretone, while neither of the agents had effect without pretone. NADPH oxidase type 4 (NOX4) inhibitors (diphenylene iodonium and plumbagin) also potentiated PhE-pretone, which was reversed by NO donor. No additive HVCDFA was observed under the pretreatment with l-NAME, ODQ, or plumbagin. Western blot and immunohistochemistry analysis showed that both NOX4 and endothelial nitric oxide synthase (eNOS) are expressed in smooth muscle layer of DFA. Various mitochondria inhibitors (rotenone, myxothiazol, and cyanide) prevented HVCDFA. From the pharmacological data, as a mechanism for HVCDFA, we suggest hypoxic inhibition of eNOS in myocytes. The putative role of NOX4 and mitochondria requires further investigation. The HVCDFA may prevent imbalance between cardiac output and skeletal blood flow under emergent hypoxia combined with increased sympathetic tone.


2001 ◽  
Vol 280 (5) ◽  
pp. F838-F843 ◽  
Author(s):  
Stephen Adler ◽  
Harer Huang ◽  
Kit E. Loke ◽  
Xiaobin Xu ◽  
Hideo Tada ◽  
...  

Nitric oxide (NO) regulates renal O2 consumption, but the source of NO mediating this effect is unclear. We explored the effects of renal NO production on O2 consumption using renal cortex from mice deficient (−/−) in endothelial (e) nitric oxide synthase (NOS). O2consumption was determined polarographically in slices of cortex from control and eNOS(−/−) mice. NO production was stimulated by bradykinin (BK) or ramiprilat (Ram) in the presence or absence of an NOS inhibitor. Basal O2 consumption was higher in eNOS(−/−) mice than in heterozygous controls (919 ± 46 vs. 1,211 ± 133 nmol O2 · min−1 · g−1; P < 0.05). BK and Ram decreased O2consumption significantly less in eNOS(−/−) mice [eNOS(−/−): BK −19.0 ± 2.8%, Ram −20.5 ± 3.3% at 10−4 M; control: BK −29.5 ± 2.5%, Ram −34 ± 1.6% at 10−4 M]. The NO synthesis inhibitor nitro-l-arginine methyl ester (l-NAME) attenuated this decrease in control but not eNOS(−/−) mice. An NO donor inhibited O2 consumption similarly in both groups independent of the presence of l-NAME. These results demonstrate that NO production by eNOS is responsible for regulation of renal O2 consumption in mouse kidney.


2002 ◽  
Vol 283 (1) ◽  
pp. C296-C304 ◽  
Author(s):  
Ragnar Henningsson ◽  
Albert Salehi ◽  
Ingmar Lundquist

The role of islet constitutive nitric oxide synthase (cNOS) in insulin-releasing mechanisms is controversial. By measuring enzyme activities and protein expression of NOS isoforms [i.e., cNOS and inducible NOS (iNOS)] in islets of Langerhans cells in relation to insulin secretion, we show that glucose dose-dependently stimulates islet activities of both cNOS and iNOS, that cNOS-derived nitric oxide (NO) strongly inhibits glucose-stimulated insulin release, and that short-term hyperglycemia in mice induces islet iNOS activity. Moreover, addition of NO gas or an NO donor inhibited glucose-stimulated insulin release, and different NOS inhibitors effected a potentiation. These effects were evident also in K+-depolarized islets in the presence of the ATP-sensitive K+ channel opener diazoxide. Furthermore, our results emphasize the necessity of measuring islet NOS activity when using NOS inhibitors, because certain concentrations of certain NOS inhibitors might unexpectedly stimulate islet NO production. This is shown by the observation that 0.5 mmol/l of the NOS inhibitor N G-monomethyl-l-arginine (l-NMMA) stimulated cNOS activity in parallel with an inhibition of the first phase of glucose-stimulated insulin release in perifused rats islets, whereas 5.0 mmol/l of l-NMMA markedly suppressed cNOS activity concomitant with a great potentiation of the insulin secretory response. The data strongly suggest, but do not definitely prove, that glucose indeed has the ability to stimulate both cNOS and iNOS in the islets and that NO might serve as a negative feedback inhibitor of glucose-stimulated insulin release. The results also suggest that hyperglycemia-evoked islet NOS activity might be one of multiple factors involved in the impairment of glucose-stimulated insulin release in type II diabetes mellitus.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2008 ◽  
Vol 294 (3) ◽  
pp. L582-L591 ◽  
Author(s):  
Neetu Sud ◽  
Stephen Wedgwood ◽  
Stephen M. Black

In this study, we explore the roles of the delta isoform of PKC (PKCδ) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCδ with either rottlerin or with the peptide, δV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCδ inhibition using either rottlerin or the overexpression of a dominant negative PKCδ mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCδ inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCδ is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCδ-mediated Akt activation and NO generation in maintaining eNOS expression.


1997 ◽  
Vol 322 (2) ◽  
pp. 477-481 ◽  
Author(s):  
John S. HOTHERSALL ◽  
Fernando Q. CUNHA ◽  
Guy H. NEILD ◽  
Alberto A. NOROHNA-DUTRA

Under pathological conditions, the induction of nitric oxide synthase (NOS) in macrophages is responsible for NO production to a cytotoxic concentration. We have investigated changes to, and the role of, intracellular glutathione in NO production by the activated murine macrophage cell line J774. Total glutathione concentrations (reduced, GSH, plus the disulphide, GSSG) were decreased to 45% of the control 48 h after cells were activated with bacterial lipopolysaccharide plus interferon γ. This was accompanied by a decrease in the GSH/GSSG ratio from 12:1 to 2:1. The intracellular decrease was not accounted for by either GSH or GSSG efflux; on the contrary, rapid export of glutathione in control cells was abrogated during activation. The loss of intra- and extracellular glutathione indicates either a decrease in synthesis de novo, or an increase in utilization, rather than competition for available NADPH. All changes in activated cells were prevented by pretreatment with the NOS inhibitor l-N-(1-iminoethyl)ornithine. Basal glutathione levels in J774 cells were manipulated by pretreatment with (1) buthionine sulphoximine (glutathione synthase inhibitor), (2) acivicin (γ-glutamyltranspeptidase inhibitor), (3) bromo-octane (glutathione S-transferase substrate) and (4) diamide/zinc (thiol oxidant and glutathione reductase inhibitor). All treatments significantly decreased the output of NO following activation. The degree of inhibition was dependent on (i) duration of treatment prior to activation, (ii) rate of depletion or subsequent recovery and (iii) thiol end product. The level of GSH did not significantly affect the production of NO, after induction of NOS. Thus, glutathione redox status appears to plays an important role in NOS induction during macrophage activation.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Sign in / Sign up

Export Citation Format

Share Document