squalene epoxidase
Recently Published Documents


TOTAL DOCUMENTS

269
(FIVE YEARS 62)

H-INDEX

37
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Olga L. Meshcheryakova ◽  
Galina P. Shuvaeva ◽  
Tatyana V. Sviridova ◽  
Anna A. Tolkacheva ◽  
Olga S. Korneeva

The researchers of this study investigated the biosynthesis of squalene by the yeast S. cerevisiae VGSH-2 through the activity of squalene epoxidase, which is a key enzyme in the conversion of squalene to ergosterol. It has been established that under aerobic conditions the antimycotic drug terbinafine promotes the switching of ergosterol formation to squalene synthesis. This switch occurs through specific inhibition of the squalene epoxidase of the yeast S. cerevisiae VGSH-2, thus increasing the biosynthetic ability of the yeast towards squalene. According to the results of this study, the optimal concentration of terbinofine in the nutrient medium was 0.3 μmol / cm3 . This concentration led to a 5-fold decrease in squalene epoxidase activity and a 7-8 times increase in squalene synthesis. The results obtained can be used to develop a competitive technology for the industrial production of squalene by microbial synthesis. Keywords: squalene, yeast, biosynthesis, inhibition of activity, terbinafine, squalene epoxidase, Saccharomices cerevisiae VGSH-2


Author(s):  
Wu Yin ◽  
zhirui zhang ◽  
Wei Wu ◽  
Hao Jiao ◽  
Yuzhong Chen ◽  
...  

Background and Purpose Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but increasing evidence reveals that SQLE is abnormally expressed in some types of malignant tumors, and the underlying mechanism remains poorly understood. Experimental Approach Bioinformatics analysis and RNA sequencing were applied to detect to differentially expressed genes in clinical HCC tumors. AnnexinV-FITC/PI, EdU assay, transwell, IHC staining, cytoskeleton F-actin filaments assay, RNA sequencing, dual-luciferase reporters and HE staining were evaluated to investigate the pharmacological effects and possible mechanisms of SQLE. Key Results We found that SQLE expression is specifically elevated in HCC tumors, correlating with poor clinical outcomes. SQLE promoted HCC growth, EMT, and metastasis both in vitro and in vivo. In contrast, silencing of SQLE expression prevented HCC development. Both RNA-seq and functional experiments revealed that the protumorigenic effect of SQLE on HCC is closely related to the activation of cellular TGF-β/SMAD signaling, but interestingly, the stimulatory effect of SQLE on TGF-β/SMAD signaling and HCC development is also critically dependent on STRAP, a serine and threonine kinase. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-β/SMAD signaling, SQLE even transcriptionally increased STRAP gene expression mediated by the trans-acting factor AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumor development in mouse models. Conclusions and Implications Taken together, SQLE serves as an oncogene in HCC development by activating TGF-β/SMAD signaling, and targeting SQLE could be useful in drug development and therapy for HCC.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiangjie Lu ◽  
Meifang Luo ◽  
Li Wang ◽  
Kunpeng Li ◽  
Yongyi Yu ◽  
...  

AbstractThe fruits of Physalis (Solanaceae) have a unique structure, a lantern-like fruiting calyx known as inflated calyx syndrome (ICS) or the Chinese lantern, and are rich in steroid-related compounds. However, the genetic variations underlying the origin of these characteristic traits and diversity in Physalis remain largely unknown. Here, we present a high-quality chromosome-level reference genome assembly of Physalis floridana (~1.40 Gb in size) with a contig N50 of ~4.87 Mb. Through evolutionary genomics and experimental approaches, we found that the loss of the SEP-like MADS-box gene MBP21 subclade is likely a key mutation that, together with the previously revealed mutation affecting floral MPF2 expression, might have contributed to the origination of ICS in Physaleae, suggesting that the origination of a morphological novelty may have resulted from an evolutionary scenario in which one mutation compensated for another deleterious mutation. Moreover, the significant expansion of squalene epoxidase genes is potentially associated with the natural variation of steroid-related compounds in Physalis fruits. The results reveal the importance of gene gains (duplication) and/or subsequent losses as genetic bases of the evolution of distinct fruit traits, and the data serve as a valuable resource for the evolutionary genetics and breeding of solanaceous crops.


2021 ◽  
Vol 7 (11) ◽  
pp. 983
Author(s):  
Rosalie Sacheli ◽  
Marie-Pierre Hayette

Numerous reports describe the emergence of resistance in dermatophytes, especially in T. rubrum and T. mentagrophytes/indotineae strains. We here present a review of the current status of resistance in dermatophytes worldwide. Resistance to terbinafine is mainly discussed, with different mutations found in the squalene epoxidase gene also considered. Resistance to azoles is also approached. Clinical presentations caused by resistant dermatophytes are presented, together with alternative therapies that help to better manage these kind of infections.


Author(s):  
Tienan Zang ◽  
Shudong Wang ◽  
Sa Su ◽  
Mengxu Gao ◽  
Qianqian Chen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. Kalogirou ◽  
J. Linxweiler ◽  
P. Schmucker ◽  
M. T. Snaebjornsson ◽  
W. Schmitz ◽  
...  

AbstractProstate cancer (PCa) shows strong dependence on the androgen receptor (AR) pathway. Here, we show that squalene epoxidase (SQLE), an enzyme of the cholesterol biosynthesis pathway, is overexpressed in advanced PCa and its expression correlates with poor survival. SQLE expression is controlled by micro-RNA 205 (miR-205), which is significantly downregulated in advanced PCa. Restoration of miR-205 expression or competitive inhibition of SQLE led to inhibition of de novo cholesterol biosynthesis. Furthermore, SQLE was essential for proliferation of AR-positive PCa cell lines, including abiraterone or enzalutamide resistant derivatives, and blocked transactivation of the AR pathway. Inhibition of SQLE with the FDA approved antifungal drug terbinafine also efficiently blocked orthotopic tumour growth in mice. Finally, terbinafine reduced levels of prostate specific antigen (PSA) in three out of four late-stage PCa patients. These results highlight SQLE as a therapeutic target for the treatment of advanced PCa.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1673
Author(s):  
Supakorn Potijun ◽  
Suparat Jaingam ◽  
Nuttha Sanevas ◽  
Srunya Vajrodaya ◽  
Anchalee Sirikhachornkit

Sterols and squalene are essential biomolecules required for the homeostasis of eukaryotic membrane permeability and fluidity. Both compounds have beneficial effects on human health. As the current sources of sterols and squalene are plant and shark oils, microalgae are suggested as more sustainable sources. Nonetheless, the high costs of production and processing still hinder the commercialization of algal cultivation. Strain improvement for higher product yield and tolerance to harsh environments is an attractive way to reduce costs. Being an intermediate in sterol synthesis, squalene is converted to squalene epoxide by squalene epoxidase. This step is inhibited by terbinafine, a commonly used antifungal drug. In yeasts, some terbinafine-resistant strains overproduced sterols, but similar microalgae strains have not been reported. Mutants that exhibit greater tolerance to terbinafine might accumulate increased sterols and squalene content, along with the ability to tolerate the drug and other stresses, which are beneficial for outdoor cultivation. To explore this possibility, terbinafine-resistant mutants were isolated in the model green microalga Chlamydomonas reinhardtii using UV mutagenesis. Three mutants were identified and all of them exhibited approximately 50 percent overproduction of sterols. Under terbinafine treatment, one of the mutants also accumulated around 50 percent higher levels of squalene. The higher accumulation of pigments and triacylglycerol were also observed. Along with resistance to terbinafine, this mutant also exhibited higher resistance to oxidative stress. Altogether, resistance to terbinafine can be used to screen for strains with increased levels of sterols or squalene in green microalgae without growth compromise.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jianhua Zhao ◽  
Chengzhen Sun ◽  
Fengyu Shi ◽  
Shanshan Ma ◽  
Jinshuang Zheng ◽  
...  

Abstract Background Atractylodes chinensis (DC.) Koidz is a well-known medicinal plant containing the major bioactive compound, atractylodin, a sesquiterpenoid. High-performance liquid chromatography (HPLC) analysis demonstrated that atractylodin was most abundant in 3-year old A. chinensis rhizome, compared with those from 1- and 2-year old rhizomes, however, the molecular mechanisms underlying accumulation of atractylodin in rhizomes are poorly understood. Results In this study, we characterized the transcriptomes from rhizomes of 1-, 2- and 3-year old (Y1, Y2 and Y3, respectively) A. chinensis, to identify differentially expressed genes (DEGs). We identified 240, 169 and 131 unigenes encoding the enzyme genes in the mevalonate (MVA), methylerythritol phosphate (MEP), sesquiterpenoid and triterpenoid biosynthetic pathways, respectively. To confirm the reliability of the RNA sequencing analysis, eleven key gene encoding factors involved in the sesquiterpenoid and triterpenoid biosynthetic pathway, as well as in pigment, amino acid, hormone and transcription factor functions, were selected for quantitative real time PCR (qRT-PCR) analysis. The results demonstrated similar expression patterns to those determined by RNA sequencing, with a Pearson’s correlation coefficient of 0.9 between qRT-PCR and RNA-seq data. Differential gene expression analysis of rhizomes from different ages revealed 52 genes related to sesquiterpenoid and triterpenoid biosynthesis. Among these, seven DEGs were identified in Y1 vs Y2, Y1 vs Y3 and Y2 vs Y3, of which five encoded four key enzymes, squalene/phytoene synthase (SS), squalene-hopene cyclase (SHC), squalene epoxidase (SE) and dammarenediol II synthase (DS). These four enzymes directly related to squalene biosynthesis and subsequent catalytic action. To validate the result of these seven DEGs, qRT-PCR was performed and indicated most of them displayed lower relative expression in 3-year old rhizome, similar to transcriptomic analysis. Conclusion The enzymes SS, SHC, SE and DS down-regulated expression in 3-year old rhizome. This data corresponded to the higher content of sesquiterpenoid in 3-year old rhizome, and confirmed by qRT-PCR. The results of comparative transcriptome analysis and identified key enzyme genes laid a solid foundation for investigation of production sesquiterpenoid in A. chinensis.


Sign in / Sign up

Export Citation Format

Share Document