Genetic variability and identification of quantitative trait loci affecting plant growth and chlorophyll fluorescence parameters in the model legume Medicago truncatula under control and salt stress conditions

2014 ◽  
Vol 41 (9) ◽  
pp. 983 ◽  
Author(s):  
Sarah Exbrayat ◽  
Georges Bertoni ◽  
Mohamad Reza Naghavie ◽  
Ali Peyghambari ◽  
Mounavar Badri ◽  
...  

Salinity is one of the major stresses that limits crop production worldwide and affects most physiological activities in plants. In order to study the genetic control of salt stress in the model legume Medicago truncatula Gaertn., an experiment was undertaken to determine the genetic variability and to identify quantitative trait loci (QTLs) controlling several traits related to plant growth and physiology in a population of recombinant inbred lines. Shoot and root DW, relative water content, leaf area, chlorophyll content, chlorophyll fluorescence parameters, and Na+ and K+ in shoots and roots were measured. The experiment was carried out with three replications. ANOVA showed a large genetic variation and transgressive segregation for the traits studied, suggesting putative complex tolerance mechanisms. A total of 21 QTLs were detected under control conditions and 19 QTLs were identified under 100 mm salt stress conditions, with three QTLs being common to both situations. The percentage of total phenotypic variance explained by the QTLs ranged from 4.6% to 23.01%. Overlapping QTLs for different traits were also observed, which enables us to discriminate independent traits from linked ones. The results should be helpful information for further functional analysis of salt tolerance in M. truncatula.

Author(s):  
I. Wąsek ◽  
M. Dyda ◽  
G. Gołębiowska ◽  
M. Tyrka ◽  
M. Rapacz ◽  
...  

Abstract Freezing tolerance of triticale is a major trait contributing to its winter hardiness. The identification of genomic regions — quantitative trait loci (QTL) and molecular markers associated with freezing tolerance in winter hexaploid triticale — was the aim of this study. For that purpose, a new genetic linkage map was developed for the population of 92 doubled haploid lines derived from ‘Hewo’ × ‘Magnat’ F1 hybrid. Those lines, together with parents were subjected to freezing tolerance test three times during two winter seasons. Plants were grown and cold-hardened under natural fall/winter conditions and then subjected to freezing in controlled conditions. Freezing tolerance was assessed as the plants recovery (REC), the electrolyte leakage (EL) from leaves and chlorophyll fluorescence parameters (JIP) after freezing. Three consistent QTL for several fluorescence parameters, electrolyte leakage, and the percentage of the survived plants were identified with composite interval mapping (CIM) and single marker analysis (SMA). The first locus Qfr.hm-7A.1 explained 9% of variation of both electrolyte leakage and plants recovery after freezing. Two QTL explaining up to 12% of variation in plants recovery and shared by selected chlorophyll fluorescence parameters were found on 4R and 5R chromosomes. Finally, main locus Qchl.hm-5A.1 was detected for chlorophyll fluorescence parameters that explained up to 19.6% of phenotypic variation. The co-located QTL on chromosomes 7A.1, 4R and 5R, clearly indicated physiological and genetic relationship of the plant survival after freezing with the ability to maintain optimal photochemical activity of the photosystem II and preservation of the cell membranes integrity. The genes located in silico within the identified QTL include those encoding BTR1-like protein, transmembrane helix proteins like potassium channel, and phosphoric ester hydrolase involved in response to osmotic stress as well as proteins involved in the regulation of the gene expression, chloroplast RNA processing, and pyrimidine salvage pathway. Additionally, our results confirm that the JIP test is a valuable tool to evaluate freezing tolerance of triticale under unstable winter environments.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 213 ◽  
Author(s):  
Cristhian C. Chávez-Arias ◽  
Sandra Gómez-Caro ◽  
Hermann Restrepo-Díaz

Cape gooseberry has coped with abiotic and biotic stresses such as prolonged waterlogging periods and vascular wilt in recent years. The aim of this study was to evaluate the influence of four waterlogging periods on stomatal conductance (gs), leaf water potential (Ψwf), plant growth, leaf photosynthetic pigments, malondialdehyde (MDA) production, proline content and chlorophyll fluorescence parameters in cape gooseberry plants infected with Fusarium oxysporum f. sp. physali (Foph). Two-month-old ecotype “Colombia” plants were arranged in a completely randomized factorial design in eight treatments: plants without waterlogging (control), plants with waterlogging for 4, 6 and 8 d with and without Foph, respectively. The area under the disease progress curve was higher in inoculated plants subjected to 6 and 8 d of waterlogging (55.25 and 64.25) compared to inoculated plants but without waterlogging (45.25). The results also showed a lower plant growth, gs, Ψwf, leaf photosynthetic pigments and chlorophyll fluorescence parameters (Fv/Fm, electron transport rate (ETR), Y (II) and qP) as waterlogging periods in plants with Foph increased. However, this group of plants showed a greater proline and malondialdehyde (MDA) accumulation and a higher NPQ. In conclusion, cape gooseberry shows a low acclimation to waterlogging conditions of more than 6 d in soils with Foph.


Euphytica ◽  
2011 ◽  
Vol 181 (3) ◽  
pp. 415-428 ◽  
Author(s):  
Mounawer Badri ◽  
Fabien Chardon ◽  
Thierry Huguet ◽  
Mohamed Elarbi Aouani

2007 ◽  
Vol 114 (8) ◽  
pp. 1391-1406 ◽  
Author(s):  
Bernadette Julier ◽  
Thierry Huguet ◽  
Fabien Chardon ◽  
Radia Ayadi ◽  
Jean-Baptiste Pierre ◽  
...  

2014 ◽  
Vol 34 (17) ◽  
Author(s):  
吴寿国 WU Shouguo ◽  
余学军 YU Xuejun ◽  
李凯 LI Kai ◽  
蒋玉俭 JIANG Yujian ◽  
张汝民 ZHANG Rumin

2018 ◽  
Vol 8 (2) ◽  
pp. 198-207
Author(s):  
Marta Campos Alonso

Hassallia antarctica is a terrestrial cyanobacterium colonizing various habitats in Antarctica such as soil surface, microbiological mats and seepages. H. antarctica represents one of the cyanobacterial species forming biodiversity of terrestrial autotrophs of James Ross Island, Antarctica. It is a filamentous cyanobacterium composing blackish fasciculated clusters thanks to false branching. In our study, sensitivity of the species to dehydration and salt stress was studied. We used H. antarctica culture (CCALA 956) grown on Z liquid medium. Clusters of H. antarctica were placed on wet filter paper and dried naturally at 5°C. During gradual dehydration, relative water content (RWC) was evaluated gravimetrically simultaneously with chlorophyll fluorescence measurements. Slow Kautsky kinetics and the chlorophyll fluorescence parameters (FV/FM, ФPSII) were used to assess dehydration-related decrease in primary photosynthetic processes. It was found that H. antarctica, contrastingly to other terrestrial cyanobacteria from polar habitats, was not able to maintain photosynthetic processes at RWCs as low as 20%. Even during initial phase of dehydration (RWC of 95%) rapid decline in FV/FM occured. Resistance of H. antarctica to osmotic stress was studied by time courses of the chlorophyll fluorescence parameter in response to 3.0, 0.3, and 0.03 M NaCl solution. Both shape of slow Kautsky kinetics and numeric values of chlorophyll fluorescence parameters were affected by osmotic stress. While full inhibitory effect was apparent in 3.0 M NaCl treatment immediately, the salt stress-induced decline in chlorophyll fluorescence parameters was observed at 0.03 M NaCl even after 8 hours of exposition. It was, therefore, concluded that H. antarctica exhibited high resistance to osmotic stress which may help the species to cope with repetitive dehydration events that happen in the field during austral summer season in Antarctica, James Ross Island in particular.


Sign in / Sign up

Export Citation Format

Share Document