chlorophyll fluorescence parameters
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 139)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 734
Author(s):  
Jinyang Weng ◽  
Asad Rehman ◽  
Pengli Li ◽  
Liying Chang ◽  
Yidong Zhang ◽  
...  

Due to the frequent occurrence of continuous high temperatures and heavy rain in summer, extremely high-temperature and high-humidity environments occur, which seriously harms crop growth. High temperature and humidity (HTH) stress have become the main environmental factors of combined stress in summer. The responses of morphological indexes, physiological and biochemical indexes, gas exchange parameters, and chlorophyll fluorescence parameters were measured and combined with chloroplast ultrastructure and transcriptome sequencing to analyze the reasons for the difference in tolerance to HTH stress in HTH-sensitive ‘JIN TAI LANG’ and HTH-tolerant ‘JIN DI’ varieties. The results showed that with the extension of stress time, the superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) activities of the two melon varieties increased rapidly, the leaf water content increased, and the tolerant varieties showed stronger antioxidant capacity. Among the sensitive cultivars, Pn, Fv/Fm, photosystem II, and photosystem I chlorophyll fluorescence parameters were severely inhibited and decreased rapidly with the extension of stress time, while the HTH-tolerant cultivars slightly decreased. The cell membrane and chloroplast damage in sensitive cultivars were more severe, and Lhca1, Lhca3, and Lhca4 proteins in photosystem II and Lhcb1-Lhcb6 proteins in photosystem I were inhibited compared with those in the tolerant cultivar. These conclusions may be the main reason for the different tolerances of the two cultivars. These findings will provide new insights into the response of other crops to HTH stress and also provide a basis for future research on the mechanism of HTH resistance in melon.


2022 ◽  
Vol 355 ◽  
pp. 01031
Author(s):  
Yingzhi Chen ◽  
Xingcheng Zhang ◽  
Zijun Luo ◽  
Gengyun Pan ◽  
Ruifang Wang

Eupatorium adenophorum has a serious impact on agriculture and biodiversity in China. Chlorophyll fluorescence parameters of E. adenophorum and its genera were investigated after leaf damage treatments. The results showed that the changes of chlorophyll fluorescence parameters were greatly affected by the treatment methods and species. The changes of chlorophyll fluorescence parameters of E. adenophorum and E. lindleyanum after insect feeding were significantly greater than those after simulated insect feeding. Compared with E. lindleyanum, E. adenophorum had lower LEF, higher Phi2 and PhiNPQ after damage. Therefore, E. adenophorum had a higher defense ability against insect food damage compared with E. lindleyanum.


2022 ◽  
Vol 52 (3) ◽  
Author(s):  
Liuzheng Yuan ◽  
Jiayou Liu ◽  
Zhiyong Cai ◽  
Huiqiang Wang ◽  
Jiafeng Fu ◽  
...  

ABSTRACT: The responses of two maize (Zea mays L.) cultivars, ‘LY336’ (shade tolerant) and ‘LC803’ (shade sensitive), to shade stress in a pot experiment conducted in the 2015 and 2016 growing seasons were investigated. The impact of 50% shade stress treatment on shoot biomass, photosynthetic parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content was evaluated. The shoot biomass of the two maize hybrids was decreased significantly by shade stress treatment, for shade stress 7 d, the LC803 and LY336 were reduced by 56.7% and 44.4% compared with natural light. Chlorophyll fluorescence parameters of LY336 were not significantly affected by shade stress, whereas those of LC803 were significantly affected, the Fo increased under shade stress; however Fm, FV/FM and ΦPSII were decreased under shade stress. Among photosynthetic parameters measured, net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate were significantly decreased compared with natural light, LY336 and LC803 reduction by 28.0%, 22.2%, 57.7% and 35.5%, 18.9%, 62.4%; however, intercellular CO2 concentration (Ci) was significantly increased, for the two cultivars. Under shade stress for different durations (1, 3, 5, 7 d), Pn, Gs, Ci, and MDA content differed significantly between the two cultivars. Results indicated that different maize genotypes showed different responses to shading. Shade-tolerant genotypes are only weakly affected by shade stress.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Lu Xu ◽  
Fan Gao ◽  
Jia Feng ◽  
Junping Lv ◽  
Qi Liu ◽  
...  

To study the relationship between β-carotene synthesis and geranylgeranyl pyrophosphate synthase (GGPS) activity, 15 species of Dunaliella were used to determine the changes in photosynthetic pigment contents, chlorophyll fluorescence parameters, β-carotene content, and GGPS activity. By observing the morphology and size of 15 species of Dunaliella, D8 has the largest individual algal cell and D9 has the smallest individual. Growth was relatively slow during days one through seven. After about eight days, the cells entered the logarithmic growth period and grew rapidly to a high density. After about 45 days, they entered a mature period, and growth slowed down. The contents of chlorophyll, carotenoids, and β-carotene increased during growth. D1 has the highest accumulation of β-carotene, and GGPS enzyme activity has a positive linear relationship with the β-carotene synthesis content. Phylogenetic analysis showed that the GGPS proteins of the 15 species were highly homologous, and the GGPS protein was not part of the membrane.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2782
Author(s):  
Alyona Grishina ◽  
Oksana Sherstneva ◽  
Marina Grinberg ◽  
Tatiana Zdobnova ◽  
Maria Ageyeva ◽  
...  

Chlorophyll fluorescence imaging was used to study potato virus X (PVX) infection of Nicotiana benthamiana. Infection-induced changes in chlorophyll fluorescence parameters (quantum yield of photosystem II photochemistry (ΦPSII) and non-photochemical fluorescence quenching (NPQ)) in the non-inoculated leaf were recorded and compared with the spatial distribution of the virus detected by the fluorescence of GFP associated with the virus. We determined infection-related changes at different points of the light-induced chlorophyll fluorescence kinetics and at different days after inoculation. A slight change in the light-adapted steady-state values of ΦPSII and NPQ was observed in the infected area of the non-inoculated leaf. In contrast to the steady-state parameters, the dynamics of ΦPSII and NPQ caused by the dark–light transition in healthy and infected areas differed significantly starting from the second day after the detection of the virus in a non-inoculated leaf. The coefficients of correlation between chlorophyll fluorescence parameters and virus localization were 0.67 for ΦPSII and 0.76 for NPQ. In general, the results demonstrate the possibility of reliable pre-symptomatic detection of the spread of a viral infection using chlorophyll fluorescence imaging.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12620
Author(s):  
Yi Wang ◽  
Bingyu Jia ◽  
Hongjian Ren ◽  
Zhen Feng

Background Polyploidy plays an important role in plant breeding and has widespread effects on photosynthetic capacity. To determine the photosynthetic capacity of the tetraploid variety Acer buergerianum Miq. ‘Xingwang’, we compared the gas exchange parameters, chloroplast structure, chlorophyll contents, and chlorophyll fluorescence parameters between the tetraploid Acer buergerianum ‘Xingwang’ and the diploid ‘S4’. To evaluate the effects of genome duplication on the photosynthetic capacity of Acer buergerianum ‘Xingwang’, the transcriptomes of the autotetraploid ‘Xingwang’ and the diploid ‘S4’ of A. buergerianum were compared. Methods The ploidy of Acer buergerianum ‘Xingwang’ was identified by flow cytometry and the chromosome counting method. An LI-6800 portable photosynthesis system analyzer was used to assess the gas exchange parameters of the tetraploid variety ‘Xingwang’ and diploid variety ‘S4’ of A. buergerianum. We used a BioMate 3S ultraviolet-visible spectrophotometer and portable modulated fluorometer to measure the chlorophyll contents and chlorophyll fluorescence parameters, respectively, of ‘Xingwang’ and ‘S4’. Illumina high-throughput sequencing technology was used to identify the differences in the genes involved in the photosynthetic differences and determine their expression characteristics. Results The single-cell DNA content and chromosome number of the tetraploid ‘Xingwang’ were twice those found in the normal diploid ‘S4’. In terms of gas exchange parameters, the change in stomatal conductance, change in intercellular CO2 concentration, transpiration rate and net photosynthetic rate of ‘Xingwang’ were higher than those of the diploid ‘S4’. The chlorophyll contents, the maximal photochemical efficiency of PSII and the potential photochemical efficiency of PSII in ‘Xingwang’ were higher than those of ‘S4’. The chloroplasts of ‘Xingwang’ contained thicker thylakoid lamellae. By the use of Illumina sequencing technology, a total of 51,807 unigenes were obtained; they had an average length of 1,487 nt, and the average N50 was 2,034 nt. The lengths of most of the unigenes obtained ranged from 200–300 bp, with an average value of 5,262, followed by those longer than 3,000 bp, with an average value of 4,791. The data revealed numerous differences in gene expression between the two transcriptomes. In total, 24,221 differentially expressed genes were screened, and the percentage of differentially expressed genes was as high as 46.75% (24,224/51,807), of which 10,474 genes were upregulated and 13,747 genes were downregulated. We analyzed the key genes in the photosynthesis pathway and the porphyrin and chlorophyll metabolism pathway; the upregulation of HemB may promote an increase in the chlorophyll contents of ‘Xingwang’, and the upregulation of related genes in PSII and PSI may enhance the light harvesting of ‘Xingwang’, increasing its light energy conversion efficiency.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2763
Author(s):  
Viktor Oláh ◽  
Anna Hepp ◽  
Muhammad Irfan ◽  
Ilona Mészáros

Duckweeds (Lemnaceae species) are extensively used models in ecotoxicology, and chlorophyll fluorescence imaging offers a sensitive and high throughput platform for phytotoxicity assays with these tiny plants. However, the vast number of potentially applicable chlorophyll fluorescence-based test endpoints makes comparison and generalization of results hard among different studies. The present study aimed to jointly measure and compare the sensitivity of various chlorophyll fluorescence parameters in Spirodela polyrhiza (giant duckweed) plants exposed to nickel, chromate (hexavalent chromium) and sodium chloride for 72 h, respectively. The photochemistry of Photosystem II in both dark- and light-adapted states of plants was assessed via in vivo chlorophyll fluorescence imaging method. Our results indicated that the studied parameters responded with very divergent sensitivity, highlighting the importance of parallelly assessing several chlorophyll fluorescence parameters. Generally, the light-adapted parameters were more sensitive than the dark-adapted ones. Thus, the former ones might be the preferred endpoints in phytotoxicity assays. Fv/Fm, i.e., the most extensively reported parameter literature-wise, proved to be the least sensitive endpoint; therefore, future studies might also consider reporting Fv/Fo, as its more responsive analogue. The tested toxicants induced different trends in the basic chlorophyll fluorescence parameters and, at least partly, in relative proportions of different quenching processes, suggesting that a basic distinction of water pollutants with different modes of action might be achievable by this method. We found definite hormetic patterns in responses to several endpoints. Hormesis occurred in the concentration ranges where the applied toxicants resulted in strong growth inhibition in longer-term exposures of the same duckweed clone in previous studies. These findings indicate that changes in the photochemical efficiency of plants do not necessarily go hand in hand with growth responses, and care should be taken when one exclusively interprets chlorophyll fluorescence-based endpoints as general proxies for phytotoxic effects.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259959
Author(s):  
Na Wu ◽  
Zhen Li ◽  
Sen Meng ◽  
Fei Wu

The role of arbuscular mycorrhizal (AM) fungus (Rhizophagus intraradices) in the amelioration of the water deficit-mediated negative influence on the growth, photosynthesis, and antioxidant system in Euonymus maackii Rupr. was examined. E. maackii seedlings were subjected to 5 water deficit levels, soil water contents of 20%, 40%, 60%, 80% and 100% field capacity (FC), and 2 inoculation treatments, with and without AM inoculation. The water deficit increasingly limited the seedling height, biomass accumulation in shoots and roots, chlorophyll content, gas exchange and chlorophyll fluorescence parameters with an increasing water deficit level. In addition, water deficit stimulated the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), in both shoots and roots, except under 20% FC conditions. E. maackii seedlings under all water deficit conditions formed symbiosis well with AM fungi, which significantly ameliorated the drought-mediated negative effect, especially under 40% and 60% FC conditions. Under 40% to 80% FC conditions, AM formation improved seedling growth and photosynthesis by significantly enhancing the biomass accumulation, chlorophyll content and assimilation. Mycorrhizal seedlings showed better tolerance and less sensitivity to a water deficit, reflected in the lower SOD activities of shoots and roots and CAT activity of shoots under 40% and 60% FC conditions. Downregulation of the antioxidant system in mycorrhizal seedlings suggested better maintenance of redox homeostasis and protection of metabolism, including biomass accumulation and assimilation. All the results advocated the positive role of R. intraradices inoculation in E. maackii against a water deficit, especially under 40% FC, which suggested the distinct AM performance in drought tolerance and the potential role of the combination of E. maackii-AM fungi in ecological restoration in arid regions.


2021 ◽  
Vol 70 (3-4) ◽  
pp. 123-134
Author(s):  
Chafia Larouk ◽  
Fatima Gabon ◽  
Zakaria Kehel ◽  
Abdelhamid Djekoun ◽  
Miloudi Nachit ◽  
...  

Summary This study was conducted to compare and estimate the genetic variability among durum wheat lines in response to drought according to their grain yields and physiological traits. The use of fluorescence parameters as drought selection criteria for durum wheat was investigated in a population of 249 recombinant inbred lines (RILs) derived from a cross between two cultivars of durum wheat: ‘Svevo’ and ‘Kofa’. The durum wheat RILs considered were analyzed to determine the relationship between their grain yields and chlorophyll fluorescence parameters at the grain filling stage under drought stress (rainfed) and supplemental irrigation (irrigated) conditions during the 2004 and 2005 seasons at the ICARDA center. The results obtained show that the durum wheat line performance was influenced by drought stress, indicating significant differences between the grain yields and fluorescence parameters recorded under drought rainfed (RF) and irrigation (IR) conditions. Significant differences between the experimental groups of durum wheat RILs (P<0.05) were only recorded under drought conditions, with the exception of leaf water potential (Lwp). Under such conditions, nearly all the parameters examined were significantly increased in the high-yielding group (with the exception of the Que parameter), thus revealing the genetic variability of the durum wheat lines considered in response to drought stress. The potential quantum efficiency of photosystem II (Fv/Fm) was found to be positively associated with the grain yield parameter. The mean values of Fv/Fm in both the high- and low-yielding groups significantly dropped under drought stress (0.71 and 0.68, respectively) compared to the Fv/Fm values recorded under irrigated conditions (0.80 and 0.81). Under drought conditions, slopes were highly significant (P<0.001) nearly for all the fluorescence parameters examined (with the exception of CHLSPAD) compared to those recorded under irrigation conditions. It was concluded that chlorophyll content (SPAD), F0, Fm, Fv, Fv/Fm, Lwp, and Que could be used as additional indicators in screening wheat germplasm for drought tolerance.


2021 ◽  
Author(s):  
Jared T Broddrick ◽  
Maxwell A Ware ◽  
Denis Jallet ◽  
Bernhard O. Palsson ◽  
Graham Peers

Characterizing photosynthetic productivity is necessary to understand the ecological contributions and biotechnology potential of plants, algae, and cyanobacteria. Light capture efficiency and photophysiology have long been characterized by measurements of chlorophyll fluorescence dynamics. However, these investigations typically do not consider the metabolic network downstream of light harvesting. In contrast, genome-scale metabolic models capture species-specific metabolic capabilities but have yet to incorporate the rapid regulation of the light harvesting apparatus. Here we combine chlorophyll fluorescence parameters defining photosynthetic and non-photosynthetic yield of absorbed light energy with a metabolic model of the pennate diatom Phaeodactylum tricornutum. This integration increases the model predictive accuracy regarding growth rate, intracellular oxygen production and consumption, and metabolic pathway usage. Additionally, our simulations recapitulate the link between mitochondrial dissipation of photosynthetically-derived electrons and the redox state of the photosynthetic electron transport chain. We use this framework to assess engineering strategies for rerouting cellular resources toward bioproducts. Overall, we present a methodology for incorporating a common, informative data type into computational models of light-driven metabolism for characterization, monitoring and engineering of photosynthetic organisms.


Sign in / Sign up

Export Citation Format

Share Document