Continental shelf waves and their influence on the circulation around the Great Barrier Reef

1983 ◽  
Vol 34 (1) ◽  
pp. 23 ◽  
Author(s):  
E Wolanski ◽  
AF Bennett

Winds and atmospheric pressure, sea level and water currents were measured at several locations over the continental shelf, both east and west of the Great Barrier Reef, between 14.5�s. and 20�S., from June to November 1980. The dominant wind direction changed from westward over the Coral Sea to north- westward (roughly parallel to the shore) over the shelf. A strong non-tidal low-frequency signal in all sea- level and longshore current data was found, highly coherent from site to site and strongly correlated with the longshore wind component over the shelf, though not with the atmospheric pressure. A model of wind- driven barotropic shelf waves is used to explain a number of observations, such as the invariance of temporal fluctuations of longshore current with distance from shore, and the northward longshore propagation of oceanic disturbances at a speed equal to twice that of the first-mode barotropic free shelf wave, a speed one order of magnitude smaller than that of the wind system. The low-frequency current fluctuations resulted in large water displacements, up and down the coast. Low-frequency cross-shelf currents were much weaker and less coherent. Two upwelling mechanisms are internal tides and internal Kelvin waves coupled to the barotropic shelf waves.

1983 ◽  
Vol 34 (1) ◽  
pp. 65 ◽  
Author(s):  
E Wolanski ◽  
GL Pickard

A time series of 50 days duration was obtained of sea levels and winds and of temperature and currents at six depths from 27 to 104 m at 18�19'S.,147�21'E. on the continental shelf break between the Great Barrier Reef and the Coral Sea. The sea-level signal had a predominantly mixed solar and lunar semidiurnal tidal period. The currents consisted of a semidiurnal tidal component oriented primarily cross-shelf, except near the sea floor, superimposed on a low-frequency, predominantly longshore, southward component, coherent with depth, in geostrophic balance, and modulated by the longshore wind component Large fluctuations in temperature were observed, consisting of a low-frequency component, possibly generated by internal Kelvin waves, and iiucruarions of predominantiy solar semidiurnai iidai period. The latter fiiictuations are interpreted as evidence of internal tides of amplitude up to 110 m that may be generated by the interaction of the longshore currents with topographic irregularities in the shelf. It is suggested that, during any long-term studies of water properties near the shelf break, some additional monitoring of short-term temporal variations should be carried out to avoid data aliasing by internal tides. The bottom boundary layer appears to be very active in vertical mixing. Internal tides may be very important in introducing other water components, e.g. nutrients, to the outer Great Barrier Reef.


1981 ◽  
Vol 32 (5) ◽  
pp. 721 ◽  
Author(s):  
E Wolanski ◽  
B Ruddick

Currents and sea levels were measured at a number of locations in the Great Barrier Reef (GBR) lagoon from about 10 to 13� S., during the period October-December 1979. A strong non-tidal, low-frequency modulation of all sea-level and current data was found. The currents nearshore were driven northward by the wind, and then at least partially blocked by the dense network of reefs to the north of 10� s. The water then flowed southward in deeper water adjacent to the reef, driven by a longshore pressure gradient. The low- frequency sea-level data, though not the current records, showed northward phase propagation at speeds characteristic of a first-mode shelf wave trapped in the lagoon between the shore and the reef. Data are presented revealing the intrusion of low-salinity water, through Bligh Entrance, in the GBR lagoon, as a result of river discharges in the Gulf of Papua. It is suggested that low-frequency longshore currents may periodically flush these river plumes from the GBR lagoon and enhance interaction between reefs. In the Coral Sea in front of reef passages, the large horizontal velocities may result in forces upwelling by selective withdrawal and jet entrainment.


1983 ◽  
Vol 34 (1) ◽  
pp. 49 ◽  
Author(s):  
E Wolanski ◽  
Senden D Van

Wind fluctuations in the central region of the Great Barrier Reef from December 1980 to February 1981 generated low-frequency, reversing, longshore currents superimposed on the northward longshore currents initially generated both by intense direct rainfall over the continental shelf and by Burdekin River floods. The river plumes, which account for terrigenous mud distribution on the sea floor, were swept over the Great Barrier Reef. It is suggested that intense direct rainfall over the continental shelf and Burdekin River floods may create a barotropic shelf wave.


1982 ◽  
Vol 1 (18) ◽  
pp. 14
Author(s):  
Eric Wolanski

Low-frequency forcing of water currents over the continental shelf °f Australia is quite strong and should be taken into account when the flow for durations greater than 1 day is important. In the case of the Queensland coast, the longshore wind generates barotropic continental shelf waves, raising or lowering the mean sea level by as much as 30 cm and generating longshore currents over the continental shelf, even very close to the coast, that are often larger than the tidal currents. These wind-driven currents can reverse sign, flowing alternately northward and southward, although the longshore wind stress, though fluctuating, does not change direction. To reproduce such phenomena in an analytical or computer model of wind-driven currents, it is necessary to extend the offshore boundaries of the model offshore from the continental shelf break.


1980 ◽  
Vol 31 (4) ◽  
pp. 415 ◽  
Author(s):  
E Wolanski ◽  
M Jones

Weather and currents at eight sites were measured and drogue trajectories obtained in July 1979 at Britomart Reef, a middle reef located at 18�16'S.,146� 38'E. in the central region of the Great Barrier Reef province. The longest current records (3 weeks) were obtained at two sites in passes between the Coral Sea and the Great Barrier Reef Lagoon where westerly currents modulated by tides were observed. Analysis of residuals also showed the importance of wind-driven secondary circulation. Non-tidal sea-level oscillations were very small. Shorter current records (1-10 days) at six sites in the lagoon and on the reef flat showed a predominant northerly flow, also modulated by tides and wind. A residual anticlockwise water circulation existed in the lagoon where flushing was controlled more by winds than by tides. The rise in sea level over the reef flat as a result of waves breaking was negligible. Temperature differences between air and water accounted for the cooling of the water column during the expedition. Constant south-east trade winds were experienced at the reef, while on land the wind was weaker. more variable, and often dominated by land-sea breezes.


Sign in / Sign up

Export Citation Format

Share Document