Water circulation and shelf waves in the northern Great Barrier Reef lagoon

1981 ◽  
Vol 32 (5) ◽  
pp. 721 ◽  
Author(s):  
E Wolanski ◽  
B Ruddick

Currents and sea levels were measured at a number of locations in the Great Barrier Reef (GBR) lagoon from about 10 to 13� S., during the period October-December 1979. A strong non-tidal, low-frequency modulation of all sea-level and current data was found. The currents nearshore were driven northward by the wind, and then at least partially blocked by the dense network of reefs to the north of 10� s. The water then flowed southward in deeper water adjacent to the reef, driven by a longshore pressure gradient. The low- frequency sea-level data, though not the current records, showed northward phase propagation at speeds characteristic of a first-mode shelf wave trapped in the lagoon between the shore and the reef. Data are presented revealing the intrusion of low-salinity water, through Bligh Entrance, in the GBR lagoon, as a result of river discharges in the Gulf of Papua. It is suggested that low-frequency longshore currents may periodically flush these river plumes from the GBR lagoon and enhance interaction between reefs. In the Coral Sea in front of reef passages, the large horizontal velocities may result in forces upwelling by selective withdrawal and jet entrainment.

1983 ◽  
Vol 34 (1) ◽  
pp. 23 ◽  
Author(s):  
E Wolanski ◽  
AF Bennett

Winds and atmospheric pressure, sea level and water currents were measured at several locations over the continental shelf, both east and west of the Great Barrier Reef, between 14.5�s. and 20�S., from June to November 1980. The dominant wind direction changed from westward over the Coral Sea to north- westward (roughly parallel to the shore) over the shelf. A strong non-tidal low-frequency signal in all sea- level and longshore current data was found, highly coherent from site to site and strongly correlated with the longshore wind component over the shelf, though not with the atmospheric pressure. A model of wind- driven barotropic shelf waves is used to explain a number of observations, such as the invariance of temporal fluctuations of longshore current with distance from shore, and the northward longshore propagation of oceanic disturbances at a speed equal to twice that of the first-mode barotropic free shelf wave, a speed one order of magnitude smaller than that of the wind system. The low-frequency current fluctuations resulted in large water displacements, up and down the coast. Low-frequency cross-shelf currents were much weaker and less coherent. Two upwelling mechanisms are internal tides and internal Kelvin waves coupled to the barotropic shelf waves.


2004 ◽  
Vol 22 (5) ◽  
pp. 1449-1464 ◽  
Author(s):  
N. Leder ◽  
M. Orlic

Abstract. Currents recorded at two stations positioned at the Adriatic shelf break between 17 February and 6 March 1989 were considered. They provided the first evidence of current variability related to the Adriatic-wide seiches. Current spectra were dominated by a peak at 21.1h – a well-known period of the fundamental Adriatic mode. Amplitudes of oscillations were considerable, occasionally greater than 30cm/s. Both along- and cross-basin currents were recorded, thus signalling the importance of rotational effects. Comparison of the current data with the sea-level measurements performed simultaneously along the east Adriatic coast showed that the 21-h currents flowing in the Adriatic preceded sea levels by a quarter of a cycle, as would be expected from a simple model of bay seiches. Sea-level amplitudes reached 40cm in the North Adriatic, thus marking the event as one of the strongest on record. Seiching was triggered by a suddenly changing sirocco wind, as is usually the case in the Adriatic. The most important features of the seiche event were reproduced with a two-dimensional hydrodynamic model of the Adriatic Sea, forced by the sea-level residuals measured at Otranto and the air pressure and wind data recorded at Lastovo. The model showed that the seiche-related currents were relatively strong in the area where the current measurements were performed and further north – between Zadar and Ancona. Key words. Oceanography: general (continental shelf processes) – Oceanography: physical (sea-level variations, currents)


1983 ◽  
Vol 34 (1) ◽  
pp. 49 ◽  
Author(s):  
E Wolanski ◽  
Senden D Van

Wind fluctuations in the central region of the Great Barrier Reef from December 1980 to February 1981 generated low-frequency, reversing, longshore currents superimposed on the northward longshore currents initially generated both by intense direct rainfall over the continental shelf and by Burdekin River floods. The river plumes, which account for terrigenous mud distribution on the sea floor, were swept over the Great Barrier Reef. It is suggested that intense direct rainfall over the continental shelf and Burdekin River floods may create a barotropic shelf wave.


Evidence for Holocene shorelines from the Queensland coast, off which the Great Barrier Reef lies, has epitomized the problems of eustatic fluctuations over the last 6000 years. While some areas of southern and central Queensland show evidence of no sea level higher than the present over this period, other areas, particularly within 150 km of Townsville on the mid-North coast, have provided radiometrically dated evidence for an emergence of up to 4.9 m. The area in which the 1973 Expedition worked has been described previously by several authors, and evidence for higher shorelines in the form of cemented platforms, raised reefs and related features suggesting higher sea levels, though without isotopic dating, has been noted. Research was aimed at confirming and accurately measuring and dating such evidence and relating it to the pattern described elsewhere. Any divergences must then be explained in terms of spatially and temporally varying oceanographic or geomorphic conditions and Earth movements of tectonic and/or isostatic origin.


Detailed studies, utilizing a range of both well controlled sea level criteria and dates, are required if Holocene time-sea level curves are to be established with any degree of confidence. This paper is restricted to an interpretation of Expedition results from the northern Great Barrier Reef, excluding those from the drill core. Extensive colonies of emergent fossil corals in growth position indicate that present sea level was first reached about 6000 a b. p. Elevations of cay surfaces, cemented rubble platforms, microatolls, coral shingle ridges, reef flats and mangrove swamps, referenced to present sea level show an array of heights. However, levels of particular features are accordant on many reefs: it is believed that these can be related to particular sea levels. Radiometric dating provides the time framework. Ages of samples from similar deposits on different reefs are surprisingly consistent. Oscillations in sea level since 6000 a b.p ., relative to present sea level, are identified with varying degrees of confidence. This history of relative sea level does not separate eustatic from noneustatic components.


2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


1980 ◽  
Vol 31 (4) ◽  
pp. 415 ◽  
Author(s):  
E Wolanski ◽  
M Jones

Weather and currents at eight sites were measured and drogue trajectories obtained in July 1979 at Britomart Reef, a middle reef located at 18�16'S.,146� 38'E. in the central region of the Great Barrier Reef province. The longest current records (3 weeks) were obtained at two sites in passes between the Coral Sea and the Great Barrier Reef Lagoon where westerly currents modulated by tides were observed. Analysis of residuals also showed the importance of wind-driven secondary circulation. Non-tidal sea-level oscillations were very small. Shorter current records (1-10 days) at six sites in the lagoon and on the reef flat showed a predominant northerly flow, also modulated by tides and wind. A residual anticlockwise water circulation existed in the lagoon where flushing was controlled more by winds than by tides. The rise in sea level over the reef flat as a result of waves breaking was negligible. Temperature differences between air and water accounted for the cooling of the water column during the expedition. Constant south-east trade winds were experienced at the reef, while on land the wind was weaker. more variable, and often dominated by land-sea breezes.


1956 ◽  
Vol 7 (3) ◽  
pp. 317 ◽  
Author(s):  
R Endean ◽  
W Stephenson ◽  
R Kenny

The species composition and general ecology of intertidal organisms present at Heron Island, a coral cay in the Capricorn Group, are recorded in this paper. It was found that the general zonation picture on this Great Barrier Reef island differed markedly from that found previously at localities on the Queensland mainland (Endean, Kenny, and Stephenson 1956). In particular the mainland upper barnacle (Chthamalus) zone was not represented at Heron I., and the species forming the mainland lower barnacle zone (Tetraclita squamosa (Bruguiere) ) was replaced by a different species (Tetraclita vitiata Darwin). Also the characteristic algal zone of mainland localities was replaced by a lithothamnion-zoanthid-coral zone. In order to investigate the possibility of a gradual transition from the mainland type zonation to that found on the Great Barrier Reef, as exemplified by Heron I. zonation, the species composition and general ecology of intertidal organisms inhabiting a series of continental islands lying off the Queensland coast between lat. 16� and 22� S. were investigated. The fauna of these islands was found to be closely allied to that of the mainland. There was, however, an intrusion of corals and zoanthids on the more exposed of the islands visited which lie between lat. 20� and 22�S., and also on the more northerly of the islands visited. The biogeographical implications of these findings are discussed, and it is noted that the results of the present investigation support the contention of Whitley (1932) that a longitudinal division of the Queensland marine fauna into "Solanderian" and "Banksian" elements is warranted. Accounts are also given of the major environmental factors that might affect specific composition and zonation patterns at the localities investigated. Analyses of these have given much information on the general ecology and distribution of many Queensland intertidal species. Thls information is discussed. Of particular interest was the finding that the Peronian barnacle Tetraclita rosea (Krauss) has extended its range,to the north of the biogeographical boundary situated near lat. 25� S. by colonizing the more exposed of the continental islands.


Coral Reefs ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 625-639 ◽  
Author(s):  
Nicole D. Leonard ◽  
J-x Zhao ◽  
K. J. Welsh ◽  
Y-x Feng ◽  
S. G. Smithers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document