A study of food chains in seagrass communities. III. Stable carbon isotope ratios

1985 ◽  
Vol 36 (5) ◽  
pp. 683 ◽  
Author(s):  
PD Nichols ◽  
DW Klumpp ◽  
RB Johns

Stable carbon isotope determinations have been used to obtain a general background to food chains being studied by a range of chemical and biological techniques. δ13C values indicate that animals (δ13CC - 11.4‰ to - 14.9‰), including two locally important commercial fish, Platycephalus laevigatus (rock flathead) and Hyporhamphus melanochir (southern sea garfish), from the Corner Inlet seagrass and non-seagrass communities are dependent to varying degrees upon seagrass (δ13C - 7.0‰ to - 9.3‰) and benthic algae for their carbon source. The largest changes in δ13C values in the food chains is at the point involving seagrasses and their direct herbivores. The latter have more negative δ13C values (H. melanochir - 12.1%o, isopods - 11.4%o). Little or no change in δ13C values is apparent at the higher trophic levels (carnivores - 13 .0‰ to - 14.9‰). Epiphytic material on the fresh leaves of the two seagrass species in the Inlet is depleted in 13C when compared with the seagrass leaves. An opposite effect is observed for epiphytic material on Posidonia australis detritus.

2021 ◽  
Vol 18 (5) ◽  
pp. 1793-1801
Author(s):  
Heejun Han ◽  
Jeomshik Hwang ◽  
Guebuem Kim

Abstract. In order to determine the origins of dissolved organic matter (DOM) occurring in the seawater of Sihwa Lake, we measured the stable carbon isotope ratios of dissolved organic carbon (DOC-δ13C) and the optical properties (absorbance and fluorescence) of DOM in two different seasons (March 2017 and September 2018). Sihwa Lake is enclosed by a dike along the western coast of South Korea, and the water is exchanged with the Yellow Sea twice a day through the sluice gates. The DOC concentrations were generally higher in lower-salinity waters in both periods, and excess of DOC was also observed in 2017 in high-salinity waters. Here, the excess DOC represents any DOC concentrations higher than those in the incoming open-ocean seawater. The excess DOC occurring in the lower-salinity waters originated mainly from marine sediments of tidal flats, based on the DOC-δ13C values (-20.7±1.2 ‰) and good correlations among the DOC, humic-like fluorescent DOM (FDOMH), and NH4+ concentrations. However, the origins of the excess DOC observed in 2017 appear to be from two different sources: one mainly from marine sources such as biological production based on the DOC-δ13C values (−19.1 ‰ to −20.5 ‰) and the other mainly from terrestrial sources by land–seawater interactions based on its depleted DOC-δ13C values (−21.5 ‰ to −27.8 ‰). This terrestrial DOM source observed in 2017 was likely associated with DOM on the reclaimed land, which experienced extended exposure to light and bacterial degradation as indicated by the higher spectral slope ratio (SR) of light absorbance and no concurrent increases in the FDOMH and NH4+ concentrations. Our study demonstrates that the combination of these biogeochemical tools can be a powerful tracer of DOM sources and characteristics in coastal environments.


2016 ◽  
Vol 56 (1) ◽  
pp. 355 ◽  
Author(s):  
Astrid Hentschel ◽  
Joan S. Esterle ◽  
Sue Golding

The Surat Basin’s Middle Jurassic Walloon Subgroup is a productive coal seam gas source in Queensland, Australia. The Walloon Subgroup can be subdivided into the Upper and Lower Juandah coal measures, the Tangalooma Sandstone, the Taroom Coal Measures, and the Eurombah/Durabilla Formation, from top to bottom. Correlation across the basin is challenging due to high lateral variability and lack of extensive stratigraphic markers. The Walloon Subgroup is also, in places, incised by the overlying Springbok Sandstone, sometimes interpreted as far down as the Tangalooma Sandstone. New age dates suggest that the Walloon Coal Measures are Oxfordian in age and mark a period of high rates of Corg production and burial, and an intermittent decrease of atmospheric pCO2. The un- or dis-conformable base of the Springbok Sandstone coincides with a turning point of this supposedly global phenomenon. This study uses organic stable carbon isotope trends as a correlation tool within the Surat Basin’s Walloon Subgroup and its overlying Springbok Sandstone. Analysis of a stratigraphic suite of coal samples from several wells across the Surat Basin shows a gradual enrichment in 13C up section from the Taroom to the Lower Juandah Coal Measures, with the most positive δ13C values within the Upper Juandah Coal Measures. Thereafter there is a rapid reversal to more negative δ13C values for coal samples of the Springbok Sandstone. The upward enrichment occurs well before the shift in maceral composition to increased inertinite content in the coals, suggesting more global allogenic processes are controlling the carbon isotopic trend. The consistency of these trends lends a more confident correlation for sub-units within the Walloon Subgroup, and assists in determining the level of incision disconformity of the Springbok Sandstone.


Sign in / Sign up

Export Citation Format

Share Document