lower salinity
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 26 (1) ◽  
pp. 183-195
Author(s):  
Ian Cartwright

Abstract. Baseflow to rivers comprises regional groundwater and lower-salinity intermediate water stores such as interflow, soil water, and bank return flows. Chemical mass balance (CMB) calculations based on the specific conductivity (SC) of rivers potentially estimate the groundwater contribution to baseflow. This study discusses the application of the CMB approach in rivers from south-eastern Australia and assesses the feasibility of calibrating recursive digital filters (RDFs) and sliding minima (SM) techniques based on streamflow data to estimate groundwater inflows. The common strategy of assigning the SC of groundwater inflows based on the highest annual river SC may not always be valid due to the persistent presence of lower-salinity intermediate waters. Rather, using the river SC from low-flow periods during drought years may be more realistic. If that is the case, the estimated groundwater inflows may be lower than expected, which has implications for assessing contaminant transport and the impacts of near-river groundwater extraction. Probably due to long-term variations in the proportion of groundwater in baseflow, the RDF and SM techniques cannot generally be calibrated using the CMB results to estimate annual baseflow proportions. Thus, it is not possible to extend the estimates of groundwater inflows using those methods, although in some catchments reasonable estimates of groundwater inflows can be made from annual streamflows. Short-term variations in the composition of baseflow also lead to baseflow estimates made using the CMB method being far more irregular than expected. This study illustrates that estimating baseflow, especially groundwater inflows, is not straightforward.


Geology ◽  
2022 ◽  
Author(s):  
D. Bigi ◽  
S. Lugli ◽  
V. Manzi ◽  
M. Roveri

The paleosalinity of water from which the gypsum precipitated during the Messinian salinity crisis is a controversial issue. Recent microthermometry studies on primary fluid inclusions in gypsum provided very low salinity values not compatible with precipitation from seawater, and suggested strong mixing between seawater and nonmarine waters enriched in calcium sulfate. We applied a new microthermometric protocol on gypsum crystals from nine Mediterranean sections that were experimentally stretched to measure a larger population of fluid inclusions. The results show salinities ranging from 9 to 238 wt‰ NaCl equivalent, largely falling within the evaporation path of normal seawater. The data from previous studies were obtained mostly from those fluid inclusions capable of nucleating a stable bubble after a weak stretching, which probably correspond to those having a lower salinity acquired through post-depositional crack-and-seal processes. Our data suggest instead that the primary gypsum precipitated from a marine brine, later modified by post-trapping processes during tectonics and exhumation.


2021 ◽  
Author(s):  
Ian Cartwright

Abstract. Baseflow to rivers comprises regional groundwater and lower salinity intermediate water stores such as interflow, soil water, and bank return flows. Chemical mass balance (CMB) calculations based on the specific conductivity (SC) of rivers potentially estimates the groundwater contribution to baseflow. This study discusses the application of the CMB approach in rivers from southeast Australia and assesses the feasibility of calibrating recursive digital filters (RDF) and sliding minima (SM) techniques based on streamflow data to estimate groundwater inflows. The common strategy of assigning the SC of groundwater inflows based on the highest annual river SC may not always be valid due to the long-term presence of lower salinity intermediate waters. Rather, using the river SC from low flow periods during drought years may be more realistic. If that is the case, the estimated groundwater inflows may be lower than expected, which has implications for assessing contaminant transport and the impacts of near-river groundwater extraction. Probably due to long-term variations in the proportion of groundwater in baseflow, the RDF and SM techniques cannot generally be calibrated using the CMB results to estimate annual baseflow proportions. Thus, it is not possible to extend the estimates of groundwater inflows using those methods, although in some catchments reasonable estimates of groundwater inflows can be made from annual streamflows. Short-term variations in the composition of baseflow also leads to baseflow estimates made using the CMB method being far more irregular than expected. This study illustrates that estimating baseflow, especially groundwater inflows, is not straightforward.


2021 ◽  
Vol 18 (5) ◽  
pp. 1793-1801
Author(s):  
Heejun Han ◽  
Jeomshik Hwang ◽  
Guebuem Kim

Abstract. In order to determine the origins of dissolved organic matter (DOM) occurring in the seawater of Sihwa Lake, we measured the stable carbon isotope ratios of dissolved organic carbon (DOC-δ13C) and the optical properties (absorbance and fluorescence) of DOM in two different seasons (March 2017 and September 2018). Sihwa Lake is enclosed by a dike along the western coast of South Korea, and the water is exchanged with the Yellow Sea twice a day through the sluice gates. The DOC concentrations were generally higher in lower-salinity waters in both periods, and excess of DOC was also observed in 2017 in high-salinity waters. Here, the excess DOC represents any DOC concentrations higher than those in the incoming open-ocean seawater. The excess DOC occurring in the lower-salinity waters originated mainly from marine sediments of tidal flats, based on the DOC-δ13C values (-20.7±1.2 ‰) and good correlations among the DOC, humic-like fluorescent DOM (FDOMH), and NH4+ concentrations. However, the origins of the excess DOC observed in 2017 appear to be from two different sources: one mainly from marine sources such as biological production based on the DOC-δ13C values (−19.1 ‰ to −20.5 ‰) and the other mainly from terrestrial sources by land–seawater interactions based on its depleted DOC-δ13C values (−21.5 ‰ to −27.8 ‰). This terrestrial DOM source observed in 2017 was likely associated with DOM on the reclaimed land, which experienced extended exposure to light and bacterial degradation as indicated by the higher spectral slope ratio (SR) of light absorbance and no concurrent increases in the FDOMH and NH4+ concentrations. Our study demonstrates that the combination of these biogeochemical tools can be a powerful tracer of DOM sources and characteristics in coastal environments.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6644
Author(s):  
Kim Jye Lee-Chang ◽  
Elisabeth Albinsson ◽  
Lesley Clementson ◽  
Andrew T. Revill ◽  
Ian Jameson ◽  
...  

The green alga Botryococcus braunii produces abundant hydrocarbons, in the form of drop-in biodiesel, which promoted interest in the species as a renewable fuel. However, despite the observation of dense populations in the wild, Botryococcus grows very slowly in culture, severely limiting its potential for development as a bioresource. Undertaking a biodiscovery program, we found new strains of Botryococcus in locations ranging from tropical to temperate Australia and from both fresh and brackish waters. As part of the ecophysiological characterisation of this new biodiversity, lipid and pigment compositions were studied for six new strains from six different locations. The strains were inoculated in either freshwater or brackish (salinity of 4)-based medium and maintained over 150 days. The growth of cultures was studied continuously, while lipid and pigment composition were analysed at final harvest on day 150. No significant differences in growth rate between fresh and brackish media were observed. Some strains were more tolerable of brackish conditions than others with a link between salinity tolerance and original location. The use of lower salinity (4 ppt) had a minimal effect on lipid composition, with only two of the six strains showing a different hydrocarbon profile in comparison to the other strains; pigment composition showed only minor variations for fresh and brackish water cultures, although the concentrations varied significantly with the freshwater cultures containing higher pigment concentrations.


2020 ◽  
Author(s):  
Bruno Soares ◽  
Naraiana Loureiro Benone ◽  
Ronaldo Borges Barthem ◽  
Alexandre Pires Marceniuk ◽  
Luciano Fogaça de Assis Montag

Cooccurrence patterns of species can appear through niche-related processes such as (i) environmental filtering matching specific sets of traits to a given environment, and (ii) limiting similarity selecting divergent functional traits to reduce niche overlap. Locally, both processes should act together to shape the distribution of species. We evaluated the importance of environmental variables and functional distinctiveness to the co-occurrence patterns of nine marine catfishes in the inner estuary of the Amazon River mouth. Sampling was carried out in the dry seasons of 1996 and 1997, and the rainy season of 1996 by nearly 120 standardized bottom trawls per expedition. We observed 13 significant pairs of segregated species and two pairs of aggregated species, which sum 41.7% of all combinations. Amphiarius phrygiatus and Sciades couma segregated from all the remaining marine catfishes by occupying shallower areas with lower salinity levels. Aggregated pairs were strongly associated with higher functional distinctiveness. We concluded that environmental filtering is the main force structuring the co-occurrence patterns by promoting spatial segregation, but functional distinctiveness allowed some species to aggregate.


ZooKeys ◽  
2020 ◽  
Vol 918 ◽  
pp. 151-160
Author(s):  
Rafael Carballeira ◽  
Cosme D. Romay ◽  
Atocha Ramos

The discovery of Plumatella repens floatoblasts in wetlands of the La Niña Bonita Reservoir and the Ciénaga de Zapata Swamp, Cuba, constitutes the first record of a freshwater bryozoan species on the island and extends the distribution range of the species in the insular Caribbean. Unlike the inland waters of the Lesser Antilles the greater availability of water and lower salinity are likely the main factors that determine the distribution of P. repens in the Greater Antilles.


Sign in / Sign up

Export Citation Format

Share Document