Circulation and water mass characteristics of the southern Great Barrier Reef

1994 ◽  
Vol 45 (1) ◽  
pp. 1 ◽  
Author(s):  
JH Middleton ◽  
P Coutis ◽  
DA Griffin ◽  
A Macks ◽  
A McTaggart ◽  
...  

Data acquired during a winter (May) cruise of the RV Franklin to the southern Great Barrier Reef indicate that the dynamics of the shelf/slope region are governed by the tides, the poleward-flowing East Australian Current (EAC), and the complex topography. Over the Marion Plateau in water deeper than - 100 m, the EAC appears to drive a slow clockwise circulation. Tides appear to be primarily responsible for shelf/slope currents in the upper layers, with evidence of nutrient uplift from the upper slope to the outer shelf proper in the Capricorn Channel. Elsewhere, the bottom Ekrnan flux of the strongly poleward-flowing EAC enhances the sloping isotherms associated with the longshore geostrophic balance, pumping nutrient-rich waters from depth to the upper continental slope. Generally, shelf waters are cooler than oceanic waters as a consequence of surface heat loss by radiation. A combination of heat loss and evaporation from waters flowing in the shallows of the Great Sandy Strait appears to result in denser 'winter mangrove waters' exporting low-oxygen, high-nutrient waters onto the shelf both north and south of Fraser Island; these subsequently mix with shelf waters and finally flow offshore at - 100 m depth, just above the salinity-maximum layer, causing anomalous nutrient values in the region of Fraser Island.

2016 ◽  
Vol 371 ◽  
pp. 120-129 ◽  
Author(s):  
Jody M. Webster ◽  
Nicholas P.J. George ◽  
Robin J. Beaman ◽  
Jon Hill ◽  
Ángel Puga-Bernabéu ◽  
...  

2020 ◽  
Vol 90 (10) ◽  
pp. 1286-1304
Author(s):  
James Daniell ◽  
Thomas Manoy ◽  
Robin J. Beaman ◽  
Jody M. Webster ◽  
Ángel Puga-Bernabéu

ABSTRACT The Great Barrier Reef (GBR) is the world's largest extant mixed silicilastic–carbonate margin. Previous research on the Great Barrier Reef has suggested that the extensive barrier reef system may act as an impermeable barrier and limit the development of delta systems during lowstands, but sufficient geophysical data to support this hypothesis are lacking. We use dense sparker seismic and sub-bottom profiler data to better understand the structure of a large lobe-shaped feature (∼ 10 km × 10 km) on the shelf edge of the central GBR and the interactions between siliciclastic and carbonate sedimentary systems. Interpreted sparker seismic contains prograding clinoforms and suggest that the lobe-shaped feature was a river-dominated shelf-edge delta. A delta on the shelf edge implies that the presence of an exposed barrier reef was not a major impediment to deposition and that other adjacent lobe-shaped features are also deltaic deposits. The shelf-edge deltas were deposited onto a broad upper-slope terrace that allowed continued progradation and limited incision when sea level fell below the shelf edge. Delta foresets are commonly colonized by coral reefs, but the spatial and temporal relationship between reefs and some deltaic units remains unclear. The presence of multiple shelf-edge deltas that link to previously mapped Burdekin River paleo-channels indicates a complex history of sedimentation, with the Burdekin River delta migrating up to 100 km along the GBR margin during the late Quaternary. Regional bathymetric data suggest that large modern or recent shelf-edge deltas are rare on the GBR and that there was a broad range of sedimentary processes operating along the margin of the GBR during periods of low sea level.


2015 ◽  
Vol 85 (9) ◽  
pp. 1019-1036 ◽  
Author(s):  
Brandon B. Harper ◽  
Ángel Puga-Bernabéu ◽  
André W Droxler ◽  
Jody M. Webster ◽  
Eberhard Gischler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document