geostrophic balance
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 33)

H-INDEX

16
(FIVE YEARS 2)

Abstract Quasi-geostrophic (QG) theory describes the dynamics of synoptic scale flows in the troposphere that are balanced with respect to both acoustic and internal gravity waves. Within this framework, effects of (turbulent) friction near the ground are usually represented by Ekman Layer theory. The troposphere covers roughly the lowest ten kilometers of the atmosphere while Ekman layer heights are typically just a few hundred meters. However, this two-layer asymptotic theory does not explicitly account for substantial changes of the potential temperature stratification due to diabatic heating associated with cloud formation or with radiative and turbulent heat fluxes which can be significant in about the lowest three kilometers and in the middle latitudes. To address this deficiency, this paper extends the classical QG–Ekman layer model by introducing an intermediate dynamically and thermodynamically active layer, called the “diabatic layer” (DL) from here on. The flow in this layer is also in acoustic, hydrostatic, and geostrophic balance but, in contrast to QG flow, variations of potential temperature are not restricted to small deviations from a stable and time independent background stratification. Instead, within the DL diabatic processes are allowed to affect the leading-order stratification. As a consequence, this layer modifies the pressure field at the top of the Ekman layer, and with it the intensity of Ekman pumping seen by the quasi-geostrophic bulk flow. The result is the proposed extended quasi-geostrophic three-layer QG-DL-Ekman model for mid-latitude dynamics.


2021 ◽  
Vol 14 (11) ◽  
pp. 6945-6975
Author(s):  
Vera Fofonova​​​​​​​ ◽  
Tuomas Kärnä ◽  
Knut Klingbeil ◽  
Alexey Androsov ◽  
Ivan Kuznetsov ◽  
...  

Abstract. We present a test case of river plume spreading to evaluate numerical methods used in coastal ocean modeling. It includes an estuary–shelf system whose dynamics combine nonlinear flow regimes with sharp frontal boundaries and linear regimes with cross-shore geostrophic balance. This system is highly sensitive to physical or numerical dissipation and mixing. The main characteristics of the plume dynamics are predicted analytically but are difficult to reproduce numerically because of numerical mixing present in the models. Our test case reveals the level of numerical mixing as well as the ability of models to reproduce nonlinear processes and frontal zone dynamics. We document numerical solutions for the Thetis and FESOM-C models on an unstructured triangular mesh, as well as ones for the GETM and FESOM-C models on a quadrilateral mesh. We propose an analysis of simulated plume spreading which may be useful in more general studies of plume dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of model discretization or computational grid than it does on the type of advection scheme.


2021 ◽  
Author(s):  
Emilio Beier ◽  
Rubén Castro ◽  
Víctor Manuel Godínez

The first direct current observations (with LADCP and surface drifters) in Bahía de La Paz, a bay in the southwestern Gulf of California (GC), concur with previous reports that the main dynamical feature during summer is a closed cyclonic circulation. However, we found that geostrophic calculations overestimate the speed of the orbital velocity: actual speeds (0.20-0.25 m s-1) were ~25-40% lower than those estimated from geostrophic balance (0.25-0.35 m s-1). The reason is that the centrifugal force cannot be neglected in this case. The mean rotation period during ship-borne observations in August 2004 was ~1.4 days, but it varied during the time that surface drifters were inside the bay, from ~1-2 days in June-July to ~2.5-3 days in September-October. The analysis of satellite data (wind velocity, sea surface temperature and chlorophyll) show that from May to September the wind stress curl is strong and cyclonic, and the surface of the bay is cooler and richer than the adjacent Gulf of California waters, which could be attributed to the positive wind stress curl. This positive wind stress curl on the bay is part of a larger-scale positive wind stress curl distribution that surrounds the southern part of the Baja California Peninsula during summer, probably enhanced in the bay by local topography features. Although there is an exchange of water between the bay and the GC, its effect on the dynamics is poorly known.


Author(s):  
Bishakdatta Gayen ◽  
Ross W. Griffiths

Global differences of temperature and buoyancy flux at the ocean surface are responsible for small-scale convection at high latitudes, global overturning, and the top-to-bottom density difference in the oceans. With planetary rotation the convection also contributes to the large-scale horizontal, geostrophic circulation, and it crucially involves a 3D linkage between the geostrophic circulation and vertical overturning. The governing dynamics of such a surface-forced convective flow are fundamentally different from Rayleigh–Bénard convection, and the role of buoyancy forcing in the oceans is poorly understood. Geostrophic balance adds to the constraints on transport in horizontal convection, as illustrated by experiments, theoretical scaling, and turbulence-resolving simulations for closed (mid-latitude) basins and an annulus or reentrant zonal (circumpolar) channel. In these geometries, buoyancy drives either horizontal mid-latitude gyre recirculations or a strong Antarctic Circumpolar Current, respectively, in addition to overturning. At large Rayleigh numbers the release of available potential energy by convection leads to turbulent mixing with a mixing efficiency approaching unity. Turbulence-resolving models are also revealing the relative roles of wind stress and buoyancy when there is mixed forcing, and in future work they need to include the effects of turbulent mixing due to energy input from tides. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 926 ◽  
Author(s):  
Jacques Vanneste

The response of a semi-infinite ocean to a slowly travelling atmospheric perturbation crossing the coast provides a simple example of the breakdown of nearly geostrophic balance induced by a boundary. We examine this response in the linear shallow-water model at small Rossby number $\varepsilon \ll 1$ . Using matched asymptotics, we show that a long Kelvin wave, with $O(\varepsilon ^{-1})$ length scale and $O(\varepsilon )$ amplitude relative to quasi-geostrophic response, is generated as the perturbation crosses the coast. Accounting for this Kelvin wave restores the conservation of mass that is violated in the quasi-geostrophic approximation.


2021 ◽  
Vol 21 (13) ◽  
pp. 10393-10412
Author(s):  
Markus Geldenhuys ◽  
Peter Preusse ◽  
Isabell Krisch ◽  
Christoph Zülicke ◽  
Jörn Ungermann ◽  
...  

Abstract. To better understand the impact of gravity waves (GWs) on the middle atmosphere in the current and future climate, it is essential to understand their excitation mechanisms and to quantify their basic properties. Here a new process for GW excitation by orography–jet interaction is discussed. In a case study, we identify the source of a GW observed over Greenland on 10 March 2016 during the POLSTRACC (POLar STRAtosphere in a Changing Climate) aircraft campaign. Measurements were taken with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) instrument deployed on the High Altitude Long Range (HALO) German research aircraft. The measured infrared limb radiances are converted into a 3D observational temperature field through the use of inverse modelling and limited-angle tomography. We observe GWs along a transect through Greenland where the GW packet covers ≈ 1/3 of the Greenland mainland. GLORIA observations indicate GWs between 10 and 13 km of altitude with a horizontal wavelength of 330 km, a vertical wavelength of 2 km and a large temperature amplitude of 4.5 K. Slanted phase fronts indicate intrinsic propagation against the wind, while the ground-based propagation is with the wind. The GWs are arrested below a critical layer above the tropospheric jet. Compared to its intrinsic horizontal group velocity (25–72 m s−1) the GW packet has a slow vertical group velocity of 0.05–0.2 m s−1. This causes the GW packet to propagate long distances while spreading over a large area and remaining constrained to a narrow vertical layer. A plausible source is not only orography, but also out-of-balance winds in a jet exit region and wind shear. To identify the GW source, 3D GLORIA observations are combined with a gravity wave ray tracer, ERA5 reanalysis and high-resolution numerical experiments. In a numerical experiment with a smoothed orography, GW activity is quite weak, indicating that the GWs in the realistic orography experiment are due to orography. However, analysis shows that these GWs are not mountain waves. A favourable area for spontaneous GW emission is identified in the jet by the cross-stream ageostrophic wind, which indicates when the flow is out of geostrophic balance. Backwards ray-tracing experiments trace into the jet and regions where the Coriolis and the pressure gradient forces are out of balance. The difference between the full and a smooth-orography experiment is investigated to reveal the missing connection between orography and the out-of-balance jet. We find that this is flow over a broad area of elevated terrain which causes compression of air above Greenland. The orography modifies the wind flow over large horizontal and vertical scales, resulting in out-of-balance geostrophic components. The out-of-balance jet then excites GWs in order to bring the flow back into balance. This is the first observational evidence of GW generation by such an orography–jet mechanism.


Author(s):  
WILTON STURGES

AbstractA previous study of currents in the Gulf of Mexico by the author used long-term means from three independent data sources. Ship-drift results are in good agreement with surface drifters, but these two do not agree with satellite sea-surface heights (SSH). The agreement between the first two suggested the possibility that there could be errors in the SSH or that the mean surface flow is not in geostrophic balance. The present results, using the addition of a fourth long-term mean from hydrographic data, which agrees with the SSH, resolves the issue. The lack of agreement between different long-term means is from inadequate coverage in space and time in data from ship drifts and drifters.


Author(s):  
Olivier Marchal ◽  
Ning Zhao

AbstractRadiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of paired papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in the second paper.For all estimates, the meridional transport integrated zonally and averaged over a hemisphere, 〈Vk〉, is southward between 1000-4000 m in both hemispheres, northward between 4000-5000 m in the South Atlantic, and insignificant between 4000-5000 m in the North Atlantic. Estimates of 〈Vk〉 obtained from two distinct prior circulations - one based on a level of no motion at 4000 m and one based on Argo oat velocities at 1000 m - become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk = /〈Vk〉, where is the volume of the kth layer, is estimated to about a century between 1000-3000 m in both the South and North Atlantic, 124±9 yr (203±23 yr) between 3000-4000 m in the South (North) Atlantic, and 269±115 yr between 4000-5000 m in the South Atlantic.


2021 ◽  
Author(s):  
Jeffrey Uncu ◽  
Nicolas Grisouard

<p>The Surface Water and Ocean Topography (SWOT) mission is the next generation of satellite altimetry, set to launch in early 2022. It will be the first of its kind to provide global sea surface height (SSH) measurements fine enough to begin resolving the submesoscale. In this newly resolvable regime, “slow” flows (jets, vortices…) interact with internal waves by redistributing wave energy to other wave-vectors and frequencies. This introduces the challenge of distinguishing “slow” flows from waves, which is of key importance for inferring ocean circulation, from SSH measurements. I run numerical simulations of the one layer rotating shallow water equations to model the interaction between a single internal tide mode and vortices in (cyclo)geostrophic balance to characterize scattering and map its relevant parameter space. Preliminary results show wave scattering by vortices with Rossby numbers ranging from 0.1-4 that are not explained by the standard methods (frozen-field approximation, ray tracing…) which have been successful in the mesoscale. We find that the Rossby number, the Burger number, and the ratio of the length and velocity scales of the wave and vortex are all necessary to characterize the interaction in submesoscale regimes. Harmonic analysis is used to highlight the direction of the scattered wave energy.</p>


Sign in / Sign up

Export Citation Format

Share Document